Skip to main content

Probabilistic Assessment of Seismic Risk of Dwelling Buildings of Barcelona. Implication for the City Resilience

  • Chapter
  • First Online:
Urban Resilience for Risk and Adaptation Governance

Abstract

The knowledge of seismic risk of buildings can contribute to increase the resilience of cities. In the present work a new assessment of the seismic risk of dwelling buildings of Barcelona was done. This assessment was performed according to a probabilistic methodology, which is summarized in the following steps: (1) performing a probabilistic seismic hazard assessment (PSHA) to obtain exceedance rates of macroseismic intensities; (2) performing a probabilistic seismic vulnerability assessment (PSVA) of each building in order to determine probability density functions that describe the variation of a vulnerability index; and (3) performing a probabilistic seismic risk assessment (PSRA) to generate seismic risk curves in terms of frequencies of exceedance of damage states. In the present work 69,982 dwelling buildings of Barcelona were assessed. According to the results the percentage of dwelling buildings of Barcelona that have a probability equal or greater than 1% of suffer partial collapse in the next 50 years is a value between 0% and 34.29%. A value of 0% corresponds to the results of seismic risk obtained for the case where regional vulnerability modifiers were not considered during the procedure to assess the seismic vulnerability of buildings and 34.29% correspond to the case where regional vulnerability modifiers were considered. For the same two options, the losses due to the physical damage of the dwelling buildings of Barcelona assessed for an exposure time of 50 years, could vary from 807.3 to 1739.4 millions of euros, respectively. Finally, possible uses of the seismic risk results computed in the present work are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions: with formulas, graphs, and mathematical tables (Vol. 55). Courier Corporation.

    Google Scholar 

  • Aguilar-Meléndez, A., Pujades, L., Barbat, A., & Ordaz, M. (2008). Probabilistic assessment of seismic risk in urban areas. In Proceedings of the 14th world conference on earthquake engineering (pp. 12–17).

    Google Scholar 

  • Aguilar-Meléndez, A., Pujades, L., Barbat, A., & Lantada, N. (2010). A probabilistic model for the seismic risk of buildings: application to assess the seismic risk of buildings in urban areas. A: US National and Canadian conference on earthquake engineering. “9th US National and 10th Canadian conference on earthquake engineering”. Toronto, pp. 1–10.

    Google Scholar 

  • Aguilar-Meléndez, A. (2011). Evaluación probabilista del riesgo sísmico de edificios en zonas urbanas (297 pp). Tesis doctoral. Universidad Politécnica de Cataluña.

    Google Scholar 

  • Aguilar-Meléndez, A., Pujades, L., Barbat, A., & Lantada, N. (2011). USERISK2011. Software for computing seismic vulnerability and seismic risk of buildings in urban areas.

    Google Scholar 

  • Aguilar-Meléndez, A., Pujades, L. G., Barbat A. H., Ordaz, M. G., Lantada, N., & García-Elías, A. (2012). Probabilistic assessment of the seismic risk of Barcelona. 15 WCEE Lisboa 2012.

    Google Scholar 

  • Aguilar-Meléndez, A., Pujades, L. G., De la Puente, J., Barbat, A. H., Lantada, N., & Campos-Rios, A. (2015a) USERISK2015. Software for computing seismic vulnerability and seismic risk of buildings in urban areas. Last accessed 11 Feb 2016. https://sites.google.com/site/userisk2015/

  • Aguilar-Meléndez, A., Pujades, L. G., Barbat, A., Ordaz, M. G., & Lantada, N. (2015b). Estimación del Peligro Sísmico de Barcelona y su Aplicación en la Determinación del Riesgo Sísmico de la Ciudad. Capítulo 3. Libro: Mora, I. Coordinador, Metodologías aplicadas a las Ciencias de la Tierra. ISBN: 978-607-9091-49-1.

    Google Scholar 

  • Aguilar-Meléndez, A., Ordaz, M., De la Puente, J., González-Rocha, S. N., Rodríguez-Lozoya, H. E., Córdova-Ceballos, A., García-Elías, A., Calderón-Ramón, C., Escalante-Martínez, J. E., Laguna-Camacho, J. R., & Campos-Rios, A. (2017). Development and validation of software CRISIS to perform probabilistic seismic hazard assessment, with emphasis on the recent CRISIS2015. Computación y Sistemas (In press).

    Google Scholar 

  • Ajuntament de Barcelona. (2016). Touris statistics. Barcelona: city and surroundings. Last accessed 2 July 2017 http://www.diba.cat/documents/74348/78145163/1+Estad%C3%ADstiques+de+turisme+2015.+Barcelona_ciutat+i+entorn.pdf/d913b713-ba01-4ac9-abad-047df5a85405

  • ASCE. (2010). ASCE Standard ASCE/SEI 7–10. In Minimum design loads for buildings and other structures (658 pp).

    Google Scholar 

  • ATC-13 (1985). Earthquake damage evaluation (492 pp). Redwood City: Data for California; Applied Technology Council.

    Google Scholar 

  • Barbat, A. H., Lagomarsino, S., & Pujades, L. G. (2006). Vulnerability assessment of dwelling buildings. In C. S. Oliveira, A. Roca, & X. Goula (Eds.), Assessing and managing earth-quake risk (pp. 115–134). Dordrecht: Springer.

    Google Scholar 

  • Benedetti, D., Benzoni, G., & Parisi, M. A. (1988). Seismic vulnerability and risk evaluation for old urban nuclei. Earthquake Engineering and Structural Dynamics, 16(2), 183–201.

    Article  Google Scholar 

  • Cardona, O. D., Ordaz, M. G., Reinoso, E., Yamín, L. E., & Barbat, A. H., (2012) CAPRA- Comprehensive approach to probabilistic risk assessment: International initiative for risk management effectiveness. 15 world conference on earthquake engineering. Lisboa.

    Google Scholar 

  • Carreño, M. L., Lantada, N., Irizarry, J., Valcarcel, J. A., Barbat, A. H., & Goula, X. (2012). Comportamiento Sísmico de los Edificios de Lorca/Seismic behavior of the buildings in Lorca. Física de la Tierra, 24, 289–314. http://revistas.ucm.es/index.php/FITE/article/view/40142.

    Google Scholar 

  • Cid, J., Figueras, S., Fleta, J., Goula, X., Susagna, T., & Amieiro, C. (1999). Zonación Sísmica de la Ciudad de Barcelona (pp. 263–271). Murcia: Primer Congreso Nacional de Ingeniería Sísmica.

    Google Scholar 

  • Cornell, A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.

    Google Scholar 

  • Department d’Estadística. (2016). Cifras oficiales de población. 1 enero 2015. Last accessed 22 Dec 2016. http://www.bcn.cat/estadistica/castella/dades/tpob/ine/a2015/sexe/bcn.htm

  • Dolce, M., Kappos, A., Masi, A., Penelis, G., & Vona, M. (2006). Vulnerability assessment and earthquake damage scenarios of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies. Engineering Structures, 28, 357–371.

    Article  Google Scholar 

  • Ellingwood, B. R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 20(4), 315–323.

    Article  Google Scholar 

  • EM-DAT (2015). Disaster list. EM-DAT. The International Disaster Database. www.emdat.be. Université Catholique de Louvain, Brussels (Belgium). Last accessed 19 Jan 2016.

  • ERN-AL. (2010). CAPRA, Comprehensive approach for probabilistic risk assessment. http://www.ecapra.org/. Accessed 2 May 2012.

  • Esteva, L. (1970). Regionalización símica de México para fines de ingeniería. Mexico: Institute of Engineering Series-246, UNAM.

    Google Scholar 

  • Faccioli, E. (2006). Seismic hazard assessment for derivation of earthquake scenarios in Risk-UE. Bulletin of Earthquake Engineering, 4, 341–364. https://doi.org/10.1007/s10518-006-9021-2.

    Article  Google Scholar 

  • Faccioli, E., Pessina, V., Pitilakis, K., & Ordaz, M. (2003). WP2: Basis of a handbook of earthquake ground motions scenarios. An ad-vanced approach to earthquake risk scenarios with applica-tions to different European towns. Contract: EVK4-CT-2000-00014, 93 pp.

    Google Scholar 

  • FEMA. (2015a). HAZUS® MH 2.1. Multi-hazard loss estimation methodology. Earthquake model. User manual. Washington, DC, 718 pp. Last accessed 10 Mar 2016. http://www.fema.gov/media-library-data/20130726-1820-25045-1179/hzmhs2_1_eq_um.pdf

  • FEMA. (2015b). HAZUS® MH 2.1. Multi-hazard Loss Estimation Methodology. Earthquake Model. Technical Manual. Washington, DC, 718 pp. Last accessed 10 Mar 2016. http://www.fema.gov/media-library-data/20130726-1820-25045-6286/hzmh2_1_eq_tm.pdf

  • Gardoni, P., & LaFave, J. M. (2016). Multi-hazard Approaches to Civil Infrastructure Engineering: Mitigating Risks and Promoting Resilence. In Multi-hazard approaches to civil infrastructure engineering (pp. 3–12). Springer International Publishing.

    Google Scholar 

  • Giovinazzi, S. (2005). The vulnerability assessment and the damage scenario in seismic risk analysis. Doctoral thesis, Technical University of Braunschweig, and University of Florence, 222 pp.

    Google Scholar 

  • Goula, X., Susagna, T., Secanell, R., Fleta, J., & Roca, A. (1997). Seismic hazard assessment for Catalonia (Spain) (pp. 173–177). Barcelona: Proceedings Second Congress on Regional Geological Cartography and Information Systems.

    Google Scholar 

  • Grünthal, G. (1998). European Macroseismic Scale 1998 (Vol. 15, pp. 1–99). Luxemburg: Cahiers du Centre Europ’een de G’eodynamique et de S’eismologie.

    Google Scholar 

  • Irizarry, J., Goula, X., & Susagna, T. (2003). Evaluación de la peligrosidad sísmica de la ciudad de Barcelona en términos de aceleración espectral (pp. 389–399). 2° Congreso Nacional de Ingeniería Sísmica, Málaga, España.

    Google Scholar 

  • Irizarry, J.. (2004). An advanced approach to seismic risk assessment. Application to the cultural heritage and the urban system of Barcelona. Doctoral thesis, Universitat Politècnica de Catalunya, Barcelona, 406 pp.

    Google Scholar 

  • Irizarry, J., Lantada, N., Pujades, L. G., Barbat, A. H., Goula, X., Susagna, T., & Roca, A. (2010). Ground-shaking scenarios and urban risk evaluation of Barcelona using the Risk-UE capacity spectrum based method. Bulletin of Earthquake Engineering, 9(2), 441–466.

    Article  Google Scholar 

  • ISDR-UN. (2005, March). Hyogo framework for action 2005–2015: building the resilience of nations and communities to disasters. In Extract from the final report of the world conference on disaster reduction. (A/CONF. 206/6) (Vol. 380).

    Google Scholar 

  • Lantada N. (2007). Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona (Vol. 1, 338 pp). Tesis doctoral, Universitat Politècnica de Catalunya, Barcelona.

    Google Scholar 

  • Lantada, N., Pujades, L. G., & Barbat, A. H. (2009a). Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Natural Hazards, 51, 501–524.

    Article  Google Scholar 

  • Lantada N., Pujades L.G., & A. H. Barbat (2009b). Escenarios de riesgo sísmico para la ciudad de Barcelona (Vol. II. 76 pp). Informe técnico para el Servicio de Protección Civil. Ayuntamiento de Barcelona.

    Google Scholar 

  • Lantada, N., Irizarry, J., Barbat, A. H., Goula, X., Roca, A., Susagna, T., & Pujades, L. G. (2010). Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bulletin of Earthquake Engineering, 8(2), 201–229.

    Article  Google Scholar 

  • Lizarralde, G., Johnson, C., & Davidson, C. (2009). Rebuilding after disasters: From emergency to sustainability. New York: Routledge.

    Google Scholar 

  • López Casado, C., Molina, S., Delgado, J., & Peláez, J. A. (2000). Attenuation of intensity with Epicentral distance in the Iberian peninsula. Bulletin of the Seismological Society of America, 90, 34–47.

    Article  Google Scholar 

  • Marincioni, F., Appiotti, F., Ferretti, M., Antinori, C., Melonaro, P., Pusceddu, A., & Oreficini-Rosi, R. (2012). Perception and communication of seismic risk: The 6 April 2009 L’Aquila earthquake case study. Earthquake Spectra, 28(1), 159–183.

    Article  Google Scholar 

  • Marulanda, M. C., Carreño, M. L., Cardona, O. D., Ordaz, M. G., & Barbat, A. H. (2013). Probabilistic earthquake risk assessment using CAPRA: Application to the city of Barcelona, Spain. Natural Hazards, 69(1), 59–84.

    Article  Google Scholar 

  • McGuire, R. K. (2004). Seismic hazard and risk analysis (221 pp). Earthquake Engineering Research Institute. MNO-10.

    Google Scholar 

  • McGuire, R. K. (2008). Probabilistic seismic hazard analysis: Early history. Earthquake Engineering and Structural Dynamics, 37, 329–338.

    Article  Google Scholar 

  • Milutinovic, Z. V., Trendafiloski, G. S. (2003). WP4: Vulnerability of current buildings. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns (109 pp). Contract: EVK4-CT-2000-00014.

    Google Scholar 

  • Olivera, C., Redondo, E., Lambert, J., Riera, A., & Roca, A. (2006). The earthquakes of the XIV and XV centuries in Catalonia (NE Spain). First European conference on earthquake engineering and seismology. Ginebra, Suiza, 10 pp.

    Google Scholar 

  • Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., & D'Amico, V. (2015). CRISIS2015. Program for computing seismic hazard. Last accessed 18 Feb 2016. https://sites.google.com/site/codecrisis2015/

  • Ordaz, M., Martinelli, F., D’Amico, V., & Meletti, C. (2013). CRISIS2008: A flexible tool to perform probabilistic seismic hazard assessment. Seismological Research Letters, 84(3), 495–504.

    Article  Google Scholar 

  • Rockefeller Foundation. (2017). 100 resilient cities. Last accessed 2 Dec 2017. http://www.100resilientcities.org/cities#/-_/

  • Secanell, R., Goula, X., Susagna, T., Fleta, J., & Roca, A. (2004). Seismic hazard zonation of Catalonia, Spain, integrating random uncertainties. Journal of Seismology, 8, 25–40.

    Article  Google Scholar 

  • Susagna, M. T., & Goula, X. (1999). Atles Sísmic de Catalunya. Volum 1: Catàleg de sismicitat (p. 413). Barcelona: Institut Cartogràfic de Catalunya.

    Google Scholar 

  • UNISDR. (2015). Sendai framework for disaster risk reduction 2015–2030. http://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf. Last accessed 3 Mar 2017.

  • United Nations. (2012, March). How to make cities more resilient. A handbook for local government leaders. Geneva. http://www.unisdr.org/files/26462_handbookfinalonlineversion.pdf. Last accessed 20 Jan 2016.

  • United Nations. (2013). Plan of action on disaster risk reduction for resilience. United Nations System. Chief Executives Board for Coordination. 14 pp. http://www.preventionweb.net/files/33703_actionplanweb14.06cs1.pdf. Last accessed 19 Jan 2016.

  • UN-Habitat. (2016). City resilience profiling programme. http://unhabitat.org/urban-initiatives/initiatives-programmes/city-resilience-profiling-programme/. Last accessed 19 Jan 2016.

  • USGS. (2016a). 2010 significant earthquake and news headlines archive. http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/

  • USGS. (2016b). 2011 significant earthquake and news headlines archive. http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/

  • Villani, M. (2010). High resolution SHA in the vicinity of earthquake sources. Ph. D. thesis, Instituto Universitario di Studi Superiori, Pavia, ROSE School.

    Google Scholar 

  • Villani, M., Faccioli, E., & Ordaz, M. (2010). Verification of CRISIS2008 code.

    Google Scholar 

  • Zschau, J. (2017). MATRIX (New multi-hazard and multi-risk assessment methods for Europe) Report Summary. Project ID: 265138. Funded under: FP7-Environment. Germany. http://cordis.europa.eu/result/rcn/156166_en.html. Last accessed 8 Mar 2017.

Download references

Acknowledgements

Thanks to University of Veracruz, Barcelona Supercomputing Center, CONACYT and PRODEP. This research has been partially funded by the Ministry of Economy and Competitiveness (MINECO) of the Spanish Government and by the European Regional Development Fund (FEDER) of the European Union (UE) through projects referenced as: CGL2011-23621 and CGL2015-65913 -P (MINECO /FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Aguilar-Meléndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguilar-Meléndez, A. et al. (2019). Probabilistic Assessment of Seismic Risk of Dwelling Buildings of Barcelona. Implication for the City Resilience. In: Brunetta, G., Caldarice, O., Tollin, N., Rosas-Casals, M., Morató, J. (eds) Urban Resilience for Risk and Adaptation Governance. Resilient Cities. Springer, Cham. https://doi.org/10.1007/978-3-319-76944-8_13

Download citation

Publish with us

Policies and ethics