Advertisement

Biomedical Question Answering via Weighted Neural Network Passage Retrieval

  • Ferenc Galkó
  • Carsten EickhoffEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10772)

Abstract

The amount of publicly available biomedical literature has been growing rapidly in recent years, yet question answering systems still struggle to exploit the full potential of this source of data. In a preliminary processing step, many question answering systems rely on retrieval models for identifying relevant documents and passages. This paper proposes a weighted cosine distance retrieval scheme based on neural network word embeddings. Our experiments are based on publicly available data and tasks from the BioASQ biomedical question answering challenge and demonstrate significant performance gains over a wide range of state-of-the-art models.

Keywords

Biomedical question answering Passage retrieval 

References

  1. 1.
    Brokos, G.-I., Malakasiotis, P., Androutsopoulos, I.: Using centroids of word embeddings and word mover’s distance for biomedical document retrieval in question answering. In: Proceedings of the 15th ACL Workshop on Biomedical Natural Language Processing (2016)Google Scholar
  2. 2.
    Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-hoc retrieval. In: CIKM 2016. ACM (2016)Google Scholar
  3. 3.
    Huang, A.: Similarity measures for text document clustering. In: Proceedings of the sixth New Zealand Computer Science Research Student Conference (NZCSRSC2008), Christchurch, New Zealand, pp. 49–56 (2008)Google Scholar
  4. 4.
    Lee, H.-G., Kim, M., Kim, H., Kim, J., Kwon, S., Seo, J., Choi, J., Kim, Y.-R.: KSAnswer: question-answering system of Kangwon national university and Sogang university in the 2016 BioASQ challenge. In: ACL 2016, p. 45 (2016)Google Scholar
  5. 5.
    Malakasiotis, P., Androutsopoulos, I., Bernadou, A., Chatzidiakou, N., Papaki, E., Constantopoulos, P., Pavlopoulos, I., Krithara, A., Almyrantis, Y., Polychronopoulos, D., Kosmopoulos, A., Balikas, G., Partalas, I., Tsatsaronis, G., Heino, N.: Challenge evaluation report 2 and roadmap. European Commission Report (2014)Google Scholar
  6. 6.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  7. 7.
    Nentidis, A., Bougiatiotis, K., Krithara, A., Paliouras, G., Kakadiaris, I.: Results of the fifth edition of the BioASQ challenge. In: BioNLP 2017, pp. 48–57. Association for Computational Linguistics, Vancouver, Canada, August 2017Google Scholar
  8. 8.
    Yang, Z., Zhou, Y., Nyberg, E.: Learning to answer biomedical questions: OAQA at BioASQ 4B. In: ACL 2016, p. 23 (2016)Google Scholar
  9. 9.
    Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., Cheng, X.: Text Matching as Image Recognition. CoRR, abs/1602.06359 (2016)Google Scholar
  10. 10.
    Papagiannopoulou, E., Papanikolaou, Y., Dimitriadis, D., Lagopoulos, S., Tsoumakas, G., Laliotis, M., Markantonatos, N., Vlahavas, I.: Large-scale semantic indexing and question answering in biomedicine. In: Proceedings of the Fourth BioASQ Workshop, pp. 50–54 (2016)Google Scholar
  11. 11.
    Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)Google Scholar
  12. 12.
    Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. In: Proceedings of the Conference on Empirical Methods on Natural Language Processing (EMNLP) (2016)Google Scholar
  13. 13.
    Schulze, F., Schüler, R., Draeger, T., Dummer, D., Ernst, A., Flemming, P., Perscheid, C., Neves, M.: HPI question answering system in BioASQ 2016. In: Proceedings of the Fourth BioASQ workshop at the Conference of the Association for Computational Linguistics, pp. 38–44 (2016)Google Scholar
  14. 14.
    Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)Google Scholar
  15. 15.
    Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M.R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., et al.: An overview of the BioASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinform. 16(1), 138 (2015)CrossRefGoogle Scholar
  16. 16.
    Voorhees, E.M.: The TREC question answering track. Nat. Lang. Eng. 7(4), 361–378 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations