Skip to main content

Discriminative Path-Based Knowledge Graph Embedding for Precise Link Prediction

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10772))

Included in the following conference series:

Abstract

Representation learning of knowledge graph aims to transform both the entities and relations into continuous low-dimensional vector space. Though there have been a variety of models for knowledge graph embedding, most existing latent-based models merely explain triples via latent features, while supplementary rich inference patterns hidden in the observed graph features have not been fully employed. For this reason, in this paper we propose the discriminative path-based embedding model (DPTransE) which jointly learns from the latent features and graph features. Our model builds interactions between these two features, and uses the graph features as the crucial prior to offer precise and discriminative embedding. Experimental results demonstrate that our method outperforms other baselines on the task of link prediction and entity classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original relations are

    (1) \(/film/film\_crewmember/films\_crewed./film/film\_crew\_gig/film\),

    (2) \(/award/award\_nominee/award\_nominations./award/award\_nomination/nominated\_for\), here we use a wildcard \( * \) to reduce occupation without ambiguous expression.

  2. 2.

    The original relation path is \(/award/award\_winner/awards\_won./award/award\_honor/award\) \( -> \) \(/award/award\_category/nominees./award/award\_nomination/nominated\_for\).

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modelling multi-relational data. In: Proceedings of NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  2. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: Proceedings of AAAI (2011)

    Google Scholar 

  3. García-Durán, A., Bordes, A., Usunier, N.: Composing relationships with translations. In: Proceedings of EMNLP, pp. 286–290 (2015)

    Google Scholar 

  4. Guo, S., Wang, Q., Wang, B., Wang, L., Guo, L.: Semantically smooth knowledge graph embedding. In: Proceedings of ACL, pp. 84–94 (2015)

    Google Scholar 

  5. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with Gaussian embedding. In: Proceedings of CIKM, pp. 623–632 (2015)

    Google Scholar 

  6. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of ACL, pp. 687–696 (2015)

    Google Scholar 

  7. Fan, M., Zhou, Q., Chang, E., Zheng, T.F.: Transition-based knowledge graph embedding with relational mapping properties. In: Proceedings of PACLIC, pp. 328–337 (2014)

    Google Scholar 

  8. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81, 53–67 (2010)

    Article  MathSciNet  Google Scholar 

  9. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large scale knowledge base. In: Proceedings of EMNLP, pp. 529–539 (2011)

    Google Scholar 

  10. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: Proceedings of EMNLP, pp. 705–714 (2011)

    Google Scholar 

  11. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  12. Neelakantan, A.: Compositional vector space models for knowledge base inference. In: Proceedings of AAAI, pp. 1–16 (2015)

    Google Scholar 

  13. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. In: Proceedings of the IEEE, vol. 104, pp. 11–33 (2015)

    Google Scholar 

  14. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs Nickel. In: Proceedings of AAAI, pp. 1955–1961 (2016)

    Google Scholar 

  15. Shi, B., Weninger, T.: Fact checking in large knowledge graphs - a discriminative predicate path mining approach. Knowl.-Based Syst. 104, 123–133 (2015)

    Article  Google Scholar 

  16. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of International Conference on Intelligent Control & Information Processing, pp. 464–469 (2015)

    Google Scholar 

  17. Szumlanski, S., Gomez, F.: Automatically acquiring a semantic network of related concepts. In: Proceedings of CIKM, pp. 19–28 (2015)

    Google Scholar 

  18. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: The Workshop on Continuous Vector Space Models and their Compositionality (2015)

    Google Scholar 

  19. Wang, Q., Liu, J., Luo, Y., Wang, B., Lin, C.Y.: Knowledge base completion via coupled path ranking. In: Proceedings of ACL, pp. 1308–1318 (2016)

    Google Scholar 

  20. Wang, Z., Zhang, J., Feng, J., and Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI (2014)

    Google Scholar 

  21. Xiao, H., Huang, M., Zhu, X.: From one point to a manifold: knowledge graph embedding for precise link prediction. In: Proceedings of IJCAI, pp. 1315–1321 (2016)

    Google Scholar 

  22. Xiao, H., Huang, M., Zhu, X.: TransG: a generative model for knowledge graph embedding. In: Proceedings of ACL, pp. 2316–2325 (2016)

    Google Scholar 

  23. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71, 623–630 (2009)

    Article  MATH  Google Scholar 

  24. Cai, H., Zheng, V.W., Chang, C.C.: A comprehensive survey of graph embedding: problems, techniques and applications. In: IEEE Transactions on Knowledge and Data Engineering (2017)

    Google Scholar 

  25. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of SIGMOD, pp. 1247–1250 (2008)

    Google Scholar 

  26. Mille, G.A.: Wordnet: a lexical database for English. In: Communications of the ACM, vol. 38(11), pp. 39–41 (1995)

    Google Scholar 

Download references

Acknowledgments

We thank all the anonymous reviewers for their detailed and insightful comments on this paper. This work was supported by Humanity and Social Science Youth Foundation of Ministry of Education of China (No.15YJC870029) and Research Planning Project of National Language Committee (No. YB135-40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Wang, Q., Xu, W., Li, W., Sun, S. (2018). Discriminative Path-Based Knowledge Graph Embedding for Precise Link Prediction. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds) Advances in Information Retrieval. ECIR 2018. Lecture Notes in Computer Science(), vol 10772. Springer, Cham. https://doi.org/10.1007/978-3-319-76941-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76941-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76940-0

  • Online ISBN: 978-3-319-76941-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics