Advertisement

Melanoidins and Browning Reactions in Processed Foods. Quantitative Determinations, Colour Measurement, and Sensorial Assessment

  • Rajeev K. SinglaEmail author
  • Ashok K. Dubey
  • Sara M. Ameen
  • Shana Montalto
  • Salvatore Parisi
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Different analytes are considered at present when speaking of Maillard reaction products: 5-hydroxymethylfurfural, furosine, acrylamide, etc. The final product of Maillard reaction is represented by brownish, polymeric, and copolymeric structures named melanoidins. These colloidal and insoluble compounds can be produced in a number of different ways with other Maillard reaction products, including the cooperation of proteins. Interestingly, the browning associated appearance maybe different in certain situations, and this property might be used for new experimental studies and qualitative evaluations. The chemical structure of these polymers is discussed in this Chapter, according to recent studies involving the use of colorimetric evaluations, ultraviolet–visible spectrophotometry, Fourier-transform infrared spectroscopy, thermal decomposition, capillary zone electrophoresis, and chromatographic procedures.

Keywords

Amino compound Antimicrobial property Browning effect Colorimetric evaluation Maillard reaction Melanoidins Polymerisation 

Abbreviations

FTIR

Fourier Transform Infrared

HMF

5-Hydroxymethylfurfural

MRP

Maillard reaction product

UV–VIS

Ultraviolet–visible

References

  1. Ahn JS, Castle L, Clarke DB, Lloyd AS, Philo MR, Speck DR (2002) Verification of the findings of acrylamide in heated foods. Food Addit Contam 19(12):1116–1124.  https://doi.org/10.1080/0265203021000048214 CrossRefGoogle Scholar
  2. Arena S, Renzone G, D’Ambrosio C, Salzano AM, Scaloni A (2017) Dairy products and the Maillard reaction: A promising future for extensive food characterization by integrated proteomics studies. Food Chem 219:477–489.  https://doi.org/10.1016/j.foodchem.2016.09.165
  3. Ashie INA (2012) Enzymes in food analysis. In: Simpson BK (ed) Food biochemistry and food processing, 2nd ed., pp 39–55.  https://doi.org/10.1002/9781118308035.ch3
  4. Badoud R, Fay LB, Hunston F, Pratz G (1995) Periodate oxidative degradation of Amadori compounds. Formation of Nε-carboxymethyllysine and Ncarboymethylamino acids as markers of the early Maillard reaction. In: Lee TC, Kim HJ (eds) Chemical markers for processed and stored foods, ACS symposium series 631, Chicago, pp 208–220.  https://doi.org/10.1021/bk-1996-0631.ch018
  5. Benzing-Purdie L, Ripmeester JA, Ratcliffe CI (1985) Effects of temperature on Maillard reaction products. J Agric Food Chem 33(1):31–33.  https://doi.org/10.1021/jf00061a009 CrossRefGoogle Scholar
  6. Bogdanov S, Martin P (2002) Honey authenticity. Mitt Lebensm Hyg 93(3):232–254Google Scholar
  7. Bogdanov S, Martin P, Lüllmann C, Borneck R, Flamini C, Morlot M, Heretier J, Vorwohl G, Russmann H, Persano-Oddo L, Saba-tini AG, Marcazzan GL, Marioleas P, Tsigouri K, Kerkvliet J, Ortiz A, Ivanov T (1997) Harmonised methods of the European honey commission. Apidologie (extra issue), pp 1–59Google Scholar
  8. Bornhorst ER, Tang J, Sablani SS, Barbosa-Cánovas GV (2017) Development of model food systems for thermal pasteurization applications based on Maillard reaction products. LWT-Food Sci Technol 75, 417–424.  https://doi.org/10.1016/j.lwt.2016.09.020
  9. Borrelli RC, Fogliano V (2005) Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res 49(7):673–678.  https://doi.org/10.1002/mnfr.200500011 CrossRefGoogle Scholar
  10. Bucala R, Cerami A (1992) Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol 23:1–34.  https://doi.org/10.1016/s1054-3589(08)60961-8 CrossRefGoogle Scholar
  11. Cappelli P, Vannucchi V (1990) Chimica degli alimenti. Conservazione e trasformazione. Zanichelli, BolognaGoogle Scholar
  12. Chevalier F, Chobert JM, Genot C, Haertlé T (2001) Scavenging of free radicals, antimicrobial, and cytotoxic activities of the Maillard reaction products of betala toglobulin glycated with several sugars. J Agric Food Chem 49(10):5031–5038.  https://doi.org/10.1021/jf010549x CrossRefGoogle Scholar
  13. Chhabra GS, Liu C, Su M, Venkatachalam M, Roux KH, Sathe SK (2017) Effects of the Maillard Reaction on the Immunoreactivity of Amandin in Food Matrices. J Food Sci 82(10):2495–2503.  https://doi.org/10.1111/1750-3841.13839
  14. Corzo-Martínez M, Corzo N, Villamiel M, del Castillo MD (2012) Browning Reactions. In: Simpson BK (ed) Food biochemistry and food processing, 2nd edn, pp 56–83.  https://doi.org/10.1002/9781118308035.ch4
  15. da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R (2016) Honey: chemical composition, stability and authenticity. Food Chem 196:309–323.  https://doi.org/10.1016/j.foodchem.2015.09.051 CrossRefGoogle Scholar
  16. Delgado AM, Parisi S, Almeida MDV (2017) Greens and other vegetable foods. In: Delgado AM, Almeida MDV, Parisi S, Chemistry of the Mediterranean diet. Springer International Publishing, Switzerland, pp 59–137Google Scholar
  17. Fayle SE, Gerrard JA (2002) The Maillard reaction, vol 5. Royal Society of Chemistry, CambridgeGoogle Scholar
  18. Feather MS, Mossine V, Hirsch J (1995) The use of aminoguanidine to trap and measure decarbonyl intermediates produced during the Maillard reaction. In: Lee TC, Kim HJ (eds) Chemical markers for processed and stored foods, ACS symposium series 631, Chicago, pp 24–31.  https://doi.org/10.1021/bk-1996-0631.ch003
  19. Fernández-Artigas P, Guerra-Hernández E, García-Villanova B (1999) Browning indicators in model systems and baby cereals. J Agric Food Chem 47(7):2872–2878.  https://doi.org/10.1021/jf9808729 CrossRefGoogle Scholar
  20. Fiorino M, Parisi S (2016) Undesired chemical alterations and process-related causes. The role of thermal control and the management of thermal machines. In: Micali M, Fiorino M, Parisi S, The chemistry of thermal food processing procedures. Springer International Publishing, Cham, pp 41–54Google Scholar
  21. Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW (1994) Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes 43(5):676–683.  https://doi.org/10.2337/diab.43.5.676 CrossRefGoogle Scholar
  22. Hayase F, Usui T, Nishiyama K, Sasaki S, Shirahashi Y, Tsuchiya N, Numata N, Watanabe H (2005) Chemistry and biological effects of melanoidins and glyceraldehyde-derived pyridinium as advanced glycation end products. Ann N Y Acad Sci 1043(1):104–1010.  https://doi.org/10.1196/annals.1333.013 CrossRefGoogle Scholar
  23. Henle T, Schwarzenbolz U, Walter AW, Klosterrneyer H (1998) Protein-bound Maillard compunds in foods: analytical and technological aspects. In: O’Brien J, Nursten HE, Crabbe MJC, Ames JM (eds) The Maillard reaction in foods and medicine, Special Publication No. 223. The Royal Society of Chemistry, LondonGoogle Scholar
  24. Hidalgo FJ, Zamora R (2000) The role of lipids in non-enzymic browning. Grasas Aceites 51(1–2):35–49.  https://doi.org/10.3989/gya.2000.v51.i1-2.405 Google Scholar
  25. Hofmann T (1998) 4-alkylidene-2-imino-5-[4-alkylidene-5-oxo-1,3-imidazol-2-inyl]azamethylidene-1,3-imidazolidine—A novel colored substructure in melanoidins formed by Maillard reactions of bound arginine with glyoxal and furan-2-carboxaldehyde. J Agric Food Chem 46(10):3896–3901.  https://doi.org/10.1021/jf980396m CrossRefGoogle Scholar
  26. Ibarz A, Garvín A, Garza S, Pagán J (2009) Toxic effect of melanoidins from glucose–asparagine on trypsin activity. Food Chem Toxicol 47(8):2071–2075.  https://doi.org/10.1016/j.fct.2009.05.025 CrossRefGoogle Scholar
  27. Kim JS, Lee YS (2008) Effect of reaction pH on enolization and racemization reactions of glucose and fructose on heating with amino acid enantiomers and formation of melanoidins as result of the Maillard reaction. Food Chem 108(2):582–592.  https://doi.org/10.1016/j.foodchem.2007.11.014 CrossRefGoogle Scholar
  28. Lingnert H (1990) Development of the Maillard reaction during food processing. In: Finot PA, Aeschbacher HU, Hurrell RF, Liardon R (eds) The Maillard reaction in food processing, human nutrition and physiology. Birkhäuser Verlag, Basel, pp 171–185Google Scholar
  29. Marcus N (2016) The Maillard reaction: radicals and flavor. group presentation (date: 22nd march 2016). Department of Chemistry, University of Illinois. Available: http://www.scs.illinois.edu/denmark/wp-content/uploads/2016/03/Marcus.pdf. Accessed 02 Nov 2017
  30. Martins SIFS, Jongen WMF, van Boekel MAJS (2001) A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 11(9–10):364–373.  https://doi.org/10.1016/s0924-2244(01)00022-x Google Scholar
  31. Miller AG, Gerrard JA (2005) The Maillard reaction and food protein crosslinking. Progr Food Biopolym Res 1:69–86Google Scholar
  32. Morales FJ (2002) Application of capillary zone electrophoresis to the study of food and food-model melanoidins. Food Chem 76(3):363–369.  https://doi.org/10.1016/S0308-8146(01)00295-3 CrossRefGoogle Scholar
  33. Morales FJ (2008) Hydroxymethylfurfural (HMF) and related com-pounds. In: Stadler RH, Lineback DR (eds) Process-induced food toxicants: occurrence, formation, mitigation, and health risks. Wiley, Hoboken.  https://doi.org/10.1002/9780470430101.ch2e
  34. Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419(6906):448–449.  https://doi.org/10.1038/419448a CrossRefGoogle Scholar
  35. Nursten HE (2005) The Maillard reaction: chemistry, biochemistry and implications. The Royal Society of Chemistry, LondonGoogle Scholar
  36. Oke M, Jacob JK, Paliyath G (2012) Biochemistry of fruit processing. In: Simpson BK (ed) Food biochemistry and food processing, 2nd edn, pp 553–674.  https://doi.org/10.1002/9781118308035.ch28
  37. Parisi S (2013) Food industry and packaging materials—performance-oriented guidelines for users. Smithers Rapra Technologies, ShawburyGoogle Scholar
  38. Pastoriza S, Rufián-Henares JÁ, García-Villanova B, Guerra-Hernández E (2016) Evolution of the Maillard Reaction in Glutamine or Arginine-Dextrinomaltose Model Systems. Foods 5(4):86.  https://doi.org/10.3390/foods5040086
  39. Pathare PB, Opara UL, Al-Said FAJ (2013) Colour measurement and analysis in fresh and processed foods: a review. Food Bioproc Technol 6(1):36–60.  https://doi.org/10.1007/s11947-012-0867-9 CrossRefGoogle Scholar
  40. Pedreschi F, Mariotti MS, Granby K (2014) Current issues in dietary acrylamide: formation, mitigation and risk assessment. J Sci Food Agric 94(1):9–20.  https://doi.org/10.1002/jsfa.6349rufián-henares
  41. Rufian-Henares JA, de la Cueva SP (2009) Antimicrobial activity of coffee melanoidins. A study of their metal-chelating properties. J Agric Food Chem 57(2):432–438.  https://doi.org/10.1021/jf8027842
  42. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44(2):129–146.  https://doi.org/10.1007/s001250051591 CrossRefGoogle Scholar
  43. Steinka I, Barone C, Parisi S, Micali M (2017) Technology and chemical features of frozen vegetables. In: Steinka I, Barone C, Parisi S, Micali M (eds) The chemistry of frozen vegetables. Springer International Publishing, Cham, pp 23–29.  https://doi.org/10.1007/978-3-319-53932-4_2
  44. Tareke A, Rydberg P, Karlsson P, Eriksson S, Törnqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50(17):4998–5006.  https://doi.org/10.1021/jf020302f CrossRefGoogle Scholar
  45. Taylor JL, Demyttenaere JC, Abbaspour Tehrani K, Olave CA, Regniers L, Verschaeve L, Maes A, Elgorashi EE, van Staden J, De Kimpe N (2004) Genotoxicity of melanoidin fractions derived from a standard glucose/glycine model. J Agric Food Chem 52(2):318–323.  https://doi.org/10.1021/jf030125y CrossRefGoogle Scholar
  46. Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A (2013) Quality characterization of artisanal and retail Turkish blossom honeys: determination of physico-chemical, microbiological, bioactive properties and aroma profile. Ind Crop Prod 46:124–131.  https://doi.org/10.1016/j.indcrop.2012.12.042 CrossRefGoogle Scholar
  47. Valls-Bellés V, Torres MC, Muñiz P, Boix L, González-Sanjose ML, Codoñer-Franch P (2004) The protective effects of melanoidins in adriamycin-induced oxidative stress in isolated rat hepatocytes. J Sci Food Agric 84(13):1701–1707.  https://doi.org/10.1002/jsfa.1859 CrossRefGoogle Scholar
  48. Van Nguyen C (2006) Toxicity of the AGEs generated from the Maillard reaction: on the relationship of food-AGEs and biological-AGEs. Mol Nutr Food Res 50(12):1140–1149.  https://doi.org/10.1002/mnfr.200600144 CrossRefGoogle Scholar
  49. Velásquez Cifuentes NF (2013) Evaluación de diferentes tiempos de calentamiento de la miel de abeja (Apis mellifera) para retardar su cristalización y determinar los niveles de HMF (Hidroximetil Furfural), en la asociación de apicultores del sur occidente de Guatemala. Dissertation, Universidad de San Carlos de GuatemalaGoogle Scholar
  50. Vhangani LN, Van Wyk J (2016) Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system. Food Chem 208:301–308.  https://doi.org/10.1016/j.foodchem.2016.03.100
  51. Vignoli JA, Bassoli DG, Benassi MT (2011) Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem 124(3):863–868.  https://doi.org/10.1016/j.foodchem.2010.07.008 CrossRefGoogle Scholar
  52. Watanabe AM, Kawasumi T, Hayase F (2002) Protective effects of melanoidins derived from soy sauce and soy paste on NO-induced DNA damage. Food Sci Technol Res 8(3):231–234.  https://doi.org/10.3136/fstr.8.231 CrossRefGoogle Scholar
  53. Yaylayan VA, Stadler RH (2005) Acrylamide formation in food: a mechanistic perspective. J AOAC Int 88(1):262–267Google Scholar
  54. Zamora R, Hidalgo FJ (1994) Modification of lysine amino groups by the lipid peroxidation product 4,5(E)-epoxy-2(E)-heptenal. Lipids 29(4):243–249.  https://doi.org/10.1007/bf02536328 CrossRefGoogle Scholar
  55. Zamora R, Hidalgo FJ (1995) Linoleic acid oxidation in the presence of amino compounds produces pyrroles by carbonyl amine reactions. Biochim Biophys Acta 1258(3):319–327.  https://doi.org/10.1016/0005-2760(95)00139-4 CrossRefGoogle Scholar
  56. Zamora R, Alaiz M, Hidalgo FJ (2000) Contribution of pyrrole formation and polymerization to the nonenzymatic browning produced by aminocarbonyl reactions. J Agric Food Chem 48(8):3152–3158.  https://doi.org/10.1021/jf991090y CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Rajeev K. Singla
    • 1
    Email author
  • Ashok K. Dubey
    • 1
  • Sara M. Ameen
    • 2
  • Shana Montalto
    • 3
  • Salvatore Parisi
    • 4
  1. 1.Division of Biological Sciences and EngineeringNetaji Subhas Institute of TechnologyDwarkaIndia
  2. 2.Medical Research Laboratories, Faculty of ScienceHelwan UniversityCairoEgypt
  3. 3.Food Safety ConsultantFloridiaItaly
  4. 4.Industrial ConsultantPalermoItaly

Personalised recommendations