Advertisement

The Analytical Evaluation of Acrylamide in Foods as a Maillard Reaction Product

  • Rajeev K. SinglaEmail author
  • Ashok K. Dubey
  • Sara M. Ameen
  • Shana Montalto
  • Salvatore Parisi
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

From the sanitary viewpoint, acrylamide has been repeatedly considered as a toxic compound in foods. Actually, the toxicological importance of acrylamide cannot be discussed without reference to food browning phenomena and ‘Maillard reaction’, a series of cascade reactions. The most visible effect of Maillard reaction in thermally treated foods and beverages in certain processed foods is undoubtedly the non-enzymatic browning effect. In addition, certain questioned products can be obtained, including acrylamide. This molecule has been found in bakes, fried, and toasted products with notable amounts. The most probable reason for acrylamide production in these situations is the reaction of certain amino acids such as asparagine with reducing sugars. Because of the toxicological importance ascribed to acrylamide, this chapter is completely dedicated to this molecule and related analytical methods concerning food matrices.

Keywords

Acrylamide Amino compound Browning effect Chromatography Maillard reaction Melanoidins Reducing sugar 

Abbreviations

CZE

Capillary zone electrophoresis

EFSA

European Food Safety Authority

EFSA CONTAM Panel

EFSA Panel on Contaminants in the Food Chain

GC

Gas chromatography

GC/MS

Gas chromatography/mass spectrometry

HPLC

High-performance liquid chromatography

HPLC/MS

High-performance liquid chromatography/mass spectrometry

HPLC/MS-MS

HPLC-tandem mass spectrometry

HMF

5-Hydroxymethylfurfural

MRP

Maillard reaction product

References

  1. Arena S, Renzone G, D’Ambrosio C, Salzano AM, Scaloni A (2017) Dairy products and the Maillard reaction: a promising future for extensive food characterization by integrated proteomics studies. Food Chem 219:477–489.  https://doi.org/10.1016/j.foodchem.2016.09.165 CrossRefGoogle Scholar
  2. Bagdonaite K, Viklund G, Skog K, Murkovic M (2006) Analysis of 3-aminopropionamide: a potential precursor of acrylamide. J Biochem Biophys Methods 69(1):215–221.  https://doi.org/10.1016/j.jbbm.2006.05.008 CrossRefGoogle Scholar
  3. Becalski A, Lau BPY, Lewis D, Seaman SW (2003) Acrylamide in foods: occurrence, sources, and modeling. J Agric Food Chem 51(3):802–808.  https://doi.org/10.1021/jf020889y CrossRefGoogle Scholar
  4. Bogdanov S, Martin P (2002) Honey authenticity. Mitt Lebensm Hyg 93(3):232–254Google Scholar
  5. Bogdanov S, Martin P, Lüllmann C, Borneck R, Flamini C, Morlot M, Heretier J, Vorwohl G, Russmann H, Persano-Oddo L, Saba-tini AG, Marcazzan GL, Marioleas P, Tsigouri K, Kerkvliet J, Ortiz A, Ivanov T (1997) Harmonised methods of the European honey commission, Apidologie (extra issue) 1–59Google Scholar
  6. Bornhorst ER, Tang J, Sablani SS, Barbosa-Cánovas GV (2017) Development of model food systems for thermal pasteurization applications based on Maillard reaction products. LWT-Food Sci Technol 75:417–424.  https://doi.org/10.1016/j.lwt.2016.09.020 CrossRefGoogle Scholar
  7. Cappelli P, Vannucchi V (1990) Chimica degli alimenti. Conservazione e trasformazione, Zanichelli, BolognaGoogle Scholar
  8. Chhabra GS, Liu C, Su M, Venkatachalam M, Roux KH, Sathe SK (2017) Effects of the Maillard reaction on the immunoreactivity of amandin in food matrices. J Food Sci 82(10):2495–2503.  https://doi.org/10.1111/1750-3841.13839 CrossRefGoogle Scholar
  9. Corzo-Martínez M, Corzo N, Villamiel M, del Castillo MD (2012) Browning reactions. In: Simpson BK (ed) Food biochemistry and food processing, second edn., pp. 56–83.  https://doi.org/10.1002/9781118308035.ch4
  10. da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R (2016) Honey: chemical composition, stability and authenticity. Food Chem 196:309–323.  https://doi.org/10.1016/j.foodchem.2015.09.051 CrossRefGoogle Scholar
  11. Delgado AM, Parisi S, Almeida MDV (2017) Greens and other vegetable foods. In: Delgado AM, Almeida MDV, Parisi S, Chemistry of the mediterranean diet. Springer International Publishing, Cham, pp. 59–137Google Scholar
  12. Dills WL (1993) Protein fructosylation: fructose and the Maillard reaction. Am J Clin Nutr 58(5):779S–787SCrossRefGoogle Scholar
  13. EFSA CONTAM (2015) Scientific opinion on acrylamide in food. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). EFSA J 13(6):4104–4425.  https://doi.org/10.2903/j.efsa.2015.4104
  14. Feather MS, Mossine V, Hirsch J (1995) The use of aminoguanidine to trap and measure decarbonyl intermediates produced during the Maillard reaction. In: Lee TC, Kim HJ (eds) Chemical Markers for Processed and Stored Foods, ACS Symposium Series 631, Chicago, pp. 24–31.  https://doi.org/10.1021/bk-1996-0631ch003
  15. Fiorino M, Parisi S (2016) Undesired chemical alterations and process-related causes. The role of thermal control and the management of thermal machines. In: Micali M, Fiorino M, Parisi S, The chemistry of thermal food processing procedures. Springer International Publishing, Cham, pp. 41–54Google Scholar
  16. Franek M, Rubio D, Diblikova I, Rubio F (2014) Analytical evaluation of a high-throughput enzyme-linked immunosorbent assay for acrylamide determination in fried foods. Talanta 123:146–150.  https://doi.org/10.1016/j.talanta.2014.02.007 CrossRefGoogle Scholar
  17. Friedman M (1996) Food browning and its prevention: an overview. J Agric Food Chem 44(3):631–653.  https://doi.org/10.1021/jf950394r CrossRefGoogle Scholar
  18. Friedman M (1997) Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J Agric Food Chem 45(5):1523–1540.  https://doi.org/10.1021/jf960900s CrossRefGoogle Scholar
  19. Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem 51(16):4504–4526.  https://doi.org/10.1021/jf030204+ CrossRefGoogle Scholar
  20. Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW (1994) Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes 43(5):676–683.  https://doi.org/10.2337/diab.43.5.676 CrossRefGoogle Scholar
  21. Granvogl M, Jezussek M, Koehler P, Schieberle P (2004) Quantitation of 3-aminopropionamide in potatoes a minor but potent precursor in acrylamide formation. J Agric Food Chem 52(15):4751–4757.  https://doi.org/10.1021/jf049581s CrossRefGoogle Scholar
  22. Henle T, Schwarzenbolz U, Walter AW, Klosterrneyer H (1998) Protein-bound Maillard compounds in foods: analytical and technological aspects. In: O’ Brien J, Nursten HE, Crabbe MJC, Ames JM (eds) The Maillard reaction in foods and medicine, Special Publication No 223. The Royas Society of Chemistry, LondonGoogle Scholar
  23. Hodge JE (1953) Chemistry of browning reactions in model systems. J Agric Food Chem 1(15):928–943.  https://doi.org/10.1021/jf60015a004 CrossRefGoogle Scholar
  24. Khanna VK, Husain R, Seth PK (1988) Low protein diet modifies acrylamide neurotoxicity. Toxicol 49(2–3):395–440.  https://doi.org/10.1016/0300-483X(88)90024-8 CrossRefGoogle Scholar
  25. Khanna VK, Husain R, Seth PK (1992) Protein malnourishment: a predisposing factor in acrylamide toxicity in pregnant rats. J Toxicol Environ Health 36(4):293–305.  https://doi.org/10.1080/15287399209531640 CrossRefGoogle Scholar
  26. Kirman C, Gargas M, Deskin R, Tonner-Navarro L, Andersen M (2003) A physiologically based pharmacokinetic model for acrylamide and its metabolite, glycidamide, in the rat. J Toxicol Environ Health Part A 66(3):253–274.  https://doi.org/10.1080/15287390306368 CrossRefGoogle Scholar
  27. Maillard LC (1912) Action des acidesamines sur les sucres: formation des melanoidines par voie methodique. Compt Rend Acad Sci (Paris) 154:66–68Google Scholar
  28. Malik AK, Blasco C, Picó Y (2010) Liquid chromatography–mass spectrometry in food safety. J Chromatogr A 1217(25):4018–4040.  https://doi.org/10.1016/j.chroma.2010.03.015 CrossRefGoogle Scholar
  29. Marcus N (2016) The Maillard Reaction: Radicals and Flavor. Group presentation (date: 22th march 2016), Department of Chemistry, University of Illinois. Available http://www.scs.illinois.edu/denmark/wp-content/uploads/2016/03/Marcus.pdf. Accessed 02th November 2017
  30. Martins SIFS, Jongen WMF, van Boekel MAJS (2001) A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 11(9–10):364–373.  https://doi.org/10.1016/s0924-2244(01)00022-x Google Scholar
  31. Morales FJ (2008) Hydroxymethylfurfural (HMF) and related com-pounds. In: Stadler RH and Lineback DR (eds) Process-induced food toxicants: occurrence, formation, mitigation, and health risks, Wiley, Hoboken.  https://doi.org/10.1002/9780470430101.ch2e
  32. Ono H, Chuda Y, Ohnishi-Kameyama M, Yada H, Ishizaka M, Kobaya H, Yoshida M (2003) Analysis of acrylamide by LCMS/MS and GC-MS in processed Japanese foods. Food Addit Contam 20(3):215–220.  https://doi.org/10.1080/0265203021000060887 CrossRefGoogle Scholar
  33. Pastoriza S, Rufián-Henares JÁ, García-Villanova B, Guerra-Hernández E (2016) Evolution of the Maillard reaction in glutamine or arginine-dextrinomaltose model systems. Foods 5(4):86.  https://doi.org/10.3390/foods5040086 CrossRefGoogle Scholar
  34. Pedreschi F, Mariotti MS, Granby K (2014) Current issues in dietary acrylamide: formation, mitigation and risk assessment. J Sci Food Agric 94(1):9–20.  https://doi.org/10.1002/jsfa.6349 CrossRefGoogle Scholar
  35. Quan Y, Chen M, Zhan Y, Zhang G (2011) Development of an enhanced chemiluminescence ELISA for the rapid detection of acrylamide in food products. J Agric Food Chem 59(13):6895–6899.  https://doi.org/10.1021/jf200954w CrossRefGoogle Scholar
  36. Stadler RH, Scholz G (2004) Acrylamide: an update on current knowledge in analysis, levels in food, mechanisms of formation, and potential strategies of control. Nutr Rev 62(12):449–467.  https://doi.org/10.1111/j.1753-4887.2004.tb00018.x CrossRefGoogle Scholar
  37. Tareke A, Rydberg P, Karlsson P, Eriksson S, Törnqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50(17):4998–5006.  https://doi.org/10.1021/jf020302f CrossRefGoogle Scholar
  38. Tateo F, Bonomi M, Andreoli G (2007) Acrylamide levels in cooked rice, tomato sauces and some fast food on the Italian market. J Food Compos Anal 20(3–4):232–235.  https://doi.org/10.1016/j.jfca.2006.06.006 CrossRefGoogle Scholar
  39. Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A (2013) Quality characterization of artisanal and retail Turkish blossom honeys: determination of physico-chemical, microbiological, bioactive properties and aroma profile. Ind Crop Prod 46:124–131.  https://doi.org/doi.org/10.1016/j.indcrop.2012.12.042 CrossRefGoogle Scholar
  40. Velásquez Cifuentes NF (2013) Evaluación de diferentes tiempos de calentamiento de la miel de abeja (Apis mellifera) para retardar su cristalización y determinar los niveles de HMF (Hidroximetil Furfural), en la asociación de apicultores del sur occidente de Guatemala. Dissertation, Universidad de San Carlos de GuatemalaGoogle Scholar
  41. Vesela H, Šucman E (2013) Determination of acrylamide in food using adsorption stripping voltammetry. Czech J Food Sci 31(4):401–406CrossRefGoogle Scholar
  42. Vhangani LN, Van Wyk J (2016) Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system. Food Chem 208:301–308.  https://doi.org/10.1016/j.foodchem.2016.03.100 CrossRefGoogle Scholar
  43. Wenzl T, De La Calle MB, Anklam E (2003) Analytical methods for the determination of acrylamide in food products: a review. Food Addit Contam 20(10):885–902.  https://doi.org/10.1080/02652030310001605051 CrossRefGoogle Scholar
  44. Yada RY, Bryksa B, Nip WK (2012) An introduction to food biochemistry. In: Simpson BK (ed) Food biochemistry and food processing, second edn., pp 1–25.  https://doi.org/10.1002/9781118308035.ch1
  45. Zhang Y, Zhang Y (2007) Formation and reduction of acrylamide in Maillard reaction: a review based on the current state of knowledge. Crit Rev Food Sci Nutr 47(5):521–542.  https://doi.org/10.1080/10408390600920070 CrossRefGoogle Scholar
  46. Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO (2008) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteom Res 8(2):754–769.  https://doi.org/10.1021/pr800858h CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Rajeev K. Singla
    • 1
    Email author
  • Ashok K. Dubey
    • 1
  • Sara M. Ameen
    • 2
  • Shana Montalto
    • 3
  • Salvatore Parisi
    • 4
  1. 1.Division of Biological Sciences and EngineeringNetaji Subhas Institute of TechnologyDwarkaIndia
  2. 2.Medical Research Laboratories, Faculty of ScienceHelwan UniversityCairoEgypt
  3. 3.Food Safety ConsultantFloridiaItaly
  4. 4.Industrial ConsultantPalermoItaly

Personalised recommendations