Skip to main content

Simultaneous Ensemble Generation and Hyperparameter Optimization for Regression

  • Conference paper
  • First Online:
Book cover Artificial Intelligence (BNAIC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 823))

Included in the following conference series:

  • 1662 Accesses

Abstract

The development of advanced hyperparameter optimization algorithms, using e.g. Bayesian optimization, has encouraged a departure from hand-tuning. Primarily, this trend is observed for classification tasks while regression has received less attention. In this paper, we devise a method for simultaneously tuning hyperparameters and generating an ensemble, by explicitly optimizing parameters in an ensemble context. Techniques traditionally used for classification are adapted to suit regression problems and we investigate the use of more robust loss functions. Furthermore, we propose methods for dynamically establishing the size of an ensemble and for weighting the individual models. The performance is evaluated using three base-learners and 16 datasets. We show that our algorithms consistently outperform single optimized models and can outperform or match the performance of state of the art ensemble generation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We employ the term ‘GP parameters’ to emphasize the difference between these and the hyperparameters subject to optimization in this paper.

  2. 2.

    Code available at https://github.com/JasperSnoek/spearmint.

References

  1. Belagiannis, V., Rupprecht, C., Carneiro, G., Navab, N.: Robust optimization for deep regression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2830–2838 (2015)

    Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554 (2011)

    Google Scholar 

  4. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  5. Caruana, R., Munson, A., Niculescu-Mizil, A.: Getting the most out of ensemble selection. In: Sixth International Conference on Data Mining, ICDM 2006, pp. 828–833. IEEE (2006)

    Google Scholar 

  6. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 18. ACM (2004)

    Google Scholar 

  7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Dutta, H.: Measuring diversity in regression ensembles. In: IICAI, vol. 9, 17p (2009)

    Google Scholar 

  9. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems, pp. 2962–2970 (2015)

    Google Scholar 

  10. Gu, S., Cheng, R., Jin, Y.: Multi-objective ensemble generation. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 5(5), 234–245 (2015)

    Article  Google Scholar 

  11. Huber, P.J., et al.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Johansson, U., Löfström, T., Boström, H.: Overproduce-and-select: the grim reality. In: 2013 IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL), pp. 52–59. IEEE (2013)

    Google Scholar 

  13. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/

  14. Lacoste, A., Larochelle, H., Laviolette, F., Marchand, M.: Sequential model-based ensemble optimization. arXiv preprint arXiv:1402.0796 (2014)

  15. Lévesque, J.C., Gagné, C., Sabourin, R.: Bayesian hyperparameter optimization for ensemble learning. In: Ihler, A., Janzing, D. (eds.) 2016 Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, pp. 437–446. AUAI Press, Arlington (2016)

    Google Scholar 

  16. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  17. Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for regression: a survey. ACM Comput. Surv. (CSUR) 45(1), 10 (2012)

    Article  MATH  Google Scholar 

  18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)

    Article  Google Scholar 

  20. Seni, G., Elder, J.F.: Ensemble methods in data mining: improving accuracy through combining predictions. Synth. Lect. Data Min. Knowl. Discov. 2(1), 1–126 (2010)

    Article  Google Scholar 

  21. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  22. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  23. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat, M., Adams, R.: Scalable Bayesian optimization using deep neural networks. In: International Conference on Machine Learning, pp. 2171–2180 (2015)

    Google Scholar 

  24. Speed camera violations, Chicago data portal. https://data.cityofchicago.org/Transportation/Speed-Camera-Violations/hhkd-xvj4/data

Download references

Acknowledgements

We want to thank Mediaan for supporting this research and graciously providing compute resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Roschewitz , Kurt Driessens or Pieter Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roschewitz, D., Driessens, K., Collins, P. (2018). Simultaneous Ensemble Generation and Hyperparameter Optimization for Regression. In: Verheij, B., Wiering, M. (eds) Artificial Intelligence. BNAIC 2017. Communications in Computer and Information Science, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-76892-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76892-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76891-5

  • Online ISBN: 978-3-319-76892-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics