Skip to main content

Applications of Kinetic Materials

  • Chapter
  • First Online:
Materials that Move

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSPOLIMI))

  • 1269 Accesses

Abstract

This chapter aims to discuss selected applications of shape changing materials in different fields. Most of these examples involve shape memory alloys, particularly nitinol because at the present, this is the most established and reliable material for industrial applications. However, research efforts indicate that SMAs may be replaced by SMPs, ferrofluids, bimetals, or other novel materials in the future. The final section summarizes applications based on magnetorheological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 3 M. (2017). Archwire products—Oral care orthodontic product catalog. 3 M.com/ortho. Accessed August 04, 2017

    Google Scholar 

  • Aerofit. (2017). Couplings—Cryofit. http://aerofit.bluetonemedia.com/sma-cryofit-couplings. Accessed July 14, 2017

  • AZoM. (2002). Shape memory polymers—Biodegradable sutures. https://www.azom.com/article.aspx?ArticleID=1542. Accessed August 03, 2017

  • Behl, M., & Lendlein, A. (2007). Shape-memory polymers. Materials today, 10(4), 20–28.

    Article  CAS  Google Scholar 

  • Brown J. (2015). Shape memory alloys: New ways of using heat for a technology advantage. www.appliancedesign.com. Accessed July 11, 2017

  • Bucht, A., Pagel, K., Eppler, C., & Kunze, H. (2013). Industrial applications of shape memory alloys-potentials and limitations. In Innovative small drives and micro-motor systems (Vol. 9, pp. 1–6). GMM/ETG Symposium, VDE.

    Google Scholar 

  • Butera, F. (2008). Shape memory actuators. Advanced Materials and Processes, 166(3), 37–40.

    CAS  Google Scholar 

  • Choudhary, N., & Kaur, D. (2016). Shape memory alloy thin films and heterostructures for MEMS applications: a review. Sensors and Actuators A: Physical, 242, 162–181.

    Article  CAS  Google Scholar 

  • Conrad, J. M., & Wills, J. W. (2009). The history and future of Stiquito: A hexapod insectoid robot. In Adamatzky & Komosinski (Eds.), Artificial life models in hardware (pp. 1–20). London: Springer

    Google Scholar 

  • Courchesne, S., Popov, A. V., & Botez, R. M. (2012). New aeroelastic studies for a morphing wing. INCAS Bulletin, 4(2), 19–28.

    Article  Google Scholar 

  • Fast Education. (2016). Stiquito. https://www.youtube.com/watch?v=IfGoZ1hjwMk. Accessed December 09, 2017

  • Fornell, D. (2011). The basics of guide wire technology. https://www.dicardiology.com/article/basics-guide-wire-technology. Accessed July 26, 2017

  • GM Corporate Newsroom. (2013). Chevrolet debuts lightweight ‘smart material’ on corvette. http://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/news/us/en/2013/Feb/0212-corvette.html. Accessed July 11, 2017

  • Guangzhou Manbouri Material Technology (2014) Unique shape memory polymer label and applications. https://www.china-mbr.com/. Accessed July 10, 2017

  • Hartl, D. J., & Lagoudas, D. C. (2007). Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(4), 535–552.

    Article  CAS  Google Scholar 

  • Holbrook and Company. (2017). Welcome to active aliforms. http://www.holbrookandcompany.com/index.html. Accessed December 09, 2017

  • Huang, W., & Wu, X. (2014). Temperature indication or multilevel anti-counterfeit indication label based on shape memory polymer and temperature indication or multilevel anti-counterfeit indication method thereof U.S. Patent Application No. 14/762,593.

    Google Scholar 

  • Images. (2017). BioMetal Inchworm walking robot. http://www.imagesco.com/nitinol/inchworm.html. Accessed December 09, 2017

  • JAXA—Japan Aerospace Exploration Agency. (2013). Low shock release device. http://www.kenkai.jaxa.jp/eng/database/e-gnc001.html. Accessed July 17, 2017

  • Kciuk, M., & Turczyn, R. (2006). Properties and application of magnetorheological fluids. Journal of Achievements in Materials and Manufacturing Engineering, 18, 127–130.

    Google Scholar 

  • Kim, D. K., Voit, W., Zapka, W., Bjelke, B., Muhammed, M., & Rao, K. V. (2001). Biomedical application of ferrofluids containing magnetite nanoparticles. MRS Online Proceedings Library Archive, 676.

    Google Scholar 

  • Kotenko, M. V., Kopyssova, V. A., Razdorsky, V. V., & Kishkarev, V. V. (2008). Shape-memory dental quadriradical implants for single-stage immediate implantation and undelayed dental prosthetics. BioMedical Engineering, 42(3), 156–158.

    Article  Google Scholar 

  • KQED. (2011). Smart materials (4 of 5): Magneto rheological (MR) fluid. https://www.youtube.com/watch?v=SBXQ-6uI8GY. Accessed December 09, 2017

  • Lendlein, A., & Langer, R. (2002). Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 296(5573), 1673–1676.

    Article  Google Scholar 

  • Lendlein, A., & Langer, R. S. (2014). U.S. Patent No. 8,834,522. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Lantada, A. D., Morgado, P. L., Lorenzo-Yustos, H., Esteban, V. L., García, J. M., Sanz, J. L. M.,… & Muñoz-Guijosa, J. M. (2009). Biodevices based on Shape-memory Polymers-Current Capabilities and Challenges. In BIODEVICES (pp. 137–144).

    Google Scholar 

  • Lexcellent, C. (2013). Shape-memory alloys handbook. US: Wiley.

    Book  Google Scholar 

  • Mills, J. W. (1992). Stiquito: A small, simple, inexpensive hexapod robot. Technical report 363a, Computer Science Department, Indiana University, Bloomington IN.

    Google Scholar 

  • Mohd Jani, J., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials and Design, 56, 1078–1113.

    Article  CAS  Google Scholar 

  • Morgan, N. B. (2004). Medical shape memory alloy applications—The market and its products. Materials Science and Engineering A, 378(1), 16–23.

    Article  Google Scholar 

  • New Scientist TV. (2012). Artificial heart uses ferrofluid to pump blood. https://www.newscientist.com/blogs/nstv/2012/06/artificial-heart-ferrofluid-blood.html. Accessed December 11, 2017

  • Poznić, A., Zelić, A., & Szabó, L. (2012). Magnetorheological fluid brake–basic performances testing with magnetic field efficiency improvement proposal. Hungarian Journal of Industry and Chemistry, 40, 107–111.

    Google Scholar 

  • Raj, K., & Moskowitz, R. (1990). Commercial applications of ferrofluids. Journal of Magnetism and Magnetic Materials, 85(1–3), 233–245.

    Article  CAS  Google Scholar 

  • Ravaud, R., Lemarquand, G., Lemarquand, V., & Dépollier, C. (2008). Ironless loudspeakers with ferrofluid seals. Archives of Acoustics, 33, 53–58.

    Google Scholar 

  • Ravaud, R., Pinho, M., Lemarquand, G., Dauchez, N., Génevaux, J. M., Lemarquand, V., et al. (2009). Radial stiffness of a ferrofluid seal. IEEE Transactions on Magnetics, 45(10), 4388–4390.

    Article  Google Scholar 

  • Roger, J., Pons, J. N., Massart, R., Halbreich, A., & Bacri, J. C. (1999). Some biomedical applications of ferrofluids. The European Physical Journal Applied Physics, 5(3), 321–325.

    Article  CAS  Google Scholar 

  • Rosiakowski, A. (2012). Research on clutch with magnetorheological fluid. Archives of Mechanical Technology and Automation, 32, 47–54.

    Google Scholar 

  • Sawa, S. T. (1999). U.S. Patent No. 5,951,288. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Schetky, L. M. (2008). Shape-Memory Alloys as Multifunctional Materials. In M. Shahinpoor & H. J. Schneider (Eds.), Intelligent materials (pp. 317–338). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Wikipedia. (2017). Angiography and angioplasty. https://en.wikipedia.org. Accessed July 26, 2017

  • Wu, M. H., & Schetky, L. M. (2000, April). Industrial applications for shape memory alloys. In Proceedings of the International Conference on Shape Memory and Superelastic Technologies (pp. 171–182).

    Google Scholar 

  • Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., & Magdassi, S. (2016). 3D printing of shape memory polymers for flexible electronic devices. Advanced Materials, 28(22), 4449–4454.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Bengisu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bengisu, M., Ferrara, M. (2018). Applications of Kinetic Materials. In: Materials that Move. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-76889-2_7

Download citation

Publish with us

Policies and ethics