Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter aims at characterizing and modeling solar resource variability. It is shown that understanding solar energy variability requires a definition of the temporal and spatial context for which variability is assessed. This research describes a predictable, quantifiable variability-smoothing space–time continuum from a single point to thousands of kilometers and from seconds to days. Implications for solar penetration on the power grid and variability mitigation strategies are also discussed. Models for predicting intra-day or intra-hourly variability as a function of insolation conditions are also depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This velocity is a priori defined as the vector in the direction of the two considered locations. However, as will be discussed below, empirical evidence shows that a mean, local—directionless—velocity, can be an adequate input for assessing regional station pair correlations.

References

  1. Aguiar R, Collares-Pereira M, Conde J (1988) Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices. Sol Energy 40(3):269–279. https://doi.org/10.1016/0038-092X(88)90049-7

    Article  Google Scholar 

  2. Arias-Castro E, Kleissl J, Lave, M (2014) A Poisson model for anisotropic solar ramp rate correlations. Sol Energy 101:192–202. https://doi.org/10.1016/j.solener.2013.12.028. http://linkinghub.elsevier.com/retrieve/pii/S0038092X13005549

    Article  Google Scholar 

  3. Badosa J, Haeffelin M, Chepfer H (2013) Scales of spatial and temporal variation of solar irradiance on Reunion tropical island. Sol Energy 88:42–56. https://doi.org/10.1016/j.solener.2012.11.007. http://linkinghub.elsevier.com/retrieve/pii/S0038092X12003982

    Article  Google Scholar 

  4. Becker S, Frew BA, Andresen GB, Zeyer T, Schramm S, Greiner M, Jacobson MZ (2014) Features of a fully renewable US electricity system: optimized mixes of wind and solar PV and transmission grid extensions. Energy 72:443–458. https://doi.org/10.1016/j.energy.2014.05.067. http://linkinghub.elsevier.com/retrieve/pii/S0360544214006343

    Article  Google Scholar 

  5. Bing J, Krishnani P, Bartholomy O, Hoff T, Perez R (2012) Solar monitoring, forecasting, and variability assessment at SMUD, Denver, CO

    Google Scholar 

  6. Bosch J, Kleissl J (2013) Cloud motion vectors from a network of ground sensors in a solar power plant. Sol Energy 95:13–20. https://doi.org/10.1016/j.solener.2013.05.027. http://linkinghub.elsevier.com/retrieve/pii/S0038092X13002193

    Article  Google Scholar 

  7. Bosch J, Zheng Y, Kleissl J (2013) Deriving cloud velocity from an array of solar radiation measurements. Sol Energy 87:196–203. https://doi.org/10.1016/j.solener.2012.10.020. http://linkinghub.elsevier.com/retrieve/pii/S0038092X12003854

    Article  Google Scholar 

  8. David M, Andriamasomanana FHR, Liandrat O (2014) Spatial and temporal variability of PV output in an insular grid: case of Reunion Island. Energy Procedia 57:1275–1282. https://doi.org/10.1016/j.egypro.2014.10.117. http://linkinghub.elsevier.com/retrieve/pii/S1876610214014842

    Article  Google Scholar 

  9. ESRA (1999) ESRA, European solar radiation atlas. https://hal.archives-ouvertes.fr/hal-00363667/document

  10. Frank J, Freedman J, Brower M, Schnitzer M (2011) Development of high frequency solar data, Raleigh, NC

    Google Scholar 

  11. Fung V, Bosch JL, Roberts SW, Kleissl J (2014) Cloud shadow speed sensor. Atmos Meas Tech 7(6):1693–1700. https://doi.org/10.5194/amt-7-1693-2014. http://www.atmos-meas-tech.net/7/1693/2014/

    Article  Google Scholar 

  12. Gueymard CA, Wilcox SM (2011) Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data. Sol Energy 85(5):1068–1084. https://doi.org/10.1016/j.solener.2011.02.030. http://linkinghub.elsevier.com/retrieve/pii/S0038092X11000855

    Article  Google Scholar 

  13. Halsz G, Malachi Y (2014) Solar energy from Negev desert, Israel: assessment of power fluctuations for future PV fleet. Energy Sustain Dev 21:20–29. https://doi.org/10.1016/j.esd.2014.04.005. http://linkinghub.elsevier.com/retrieve/pii/S0973082614000404

  14. Hinkelmann L (2013) Differences between along-wind and cross-wind solar variability. Proc Sol Energy:192–203

    Google Scholar 

  15. Hoff T, Norris B (2010) Mobile high-density: irradiance sensor network: cordelia junction results

    Google Scholar 

  16. Hoff T, Perez R (2012) Predicting short-term variability of high-penetration PV, Denver, CO

    Google Scholar 

  17. Hoff TE, Perez R (2010) Quantifying PV power output variability. Sol Energy 84(10):1782–1793. https://doi.org/10.1016/j.solener.2010.07.003. http://linkinghub.elsevier.com/retrieve/pii/S0038092X10002380

    Article  Google Scholar 

  18. Hoff TE, Perez R (2012) Modeling PV fleet output variability. Sol Energy 86(8):2177–2189. https://doi.org/10.1016/j.solener.2011.11.005. http://linkinghub.elsevier.com/retrieve/pii/S0038092X11004154

    Article  Google Scholar 

  19. Holger R, Schroedter-Homscheidt M, Beyer H, Meier F, Heilscher G (2014) Wolkenindikatoren fr die Sammelschienenspannung von Niederspannungsverteilnetztransformatoren, 29. In: Symposium Photovoltaische Solarenergie, Kloster Banz, Bad Staffelstein

    Google Scholar 

  20. Holger R, Schroedter-Homscheidt M, Meier F, Heilscher G (2014) Application of meteorological data for state estimation of an electrical low voltage grid with a high amount of photovoltaic systems. In: 14th EMS annual meeting and 10th European conference on applied climatology, Prague

    Google Scholar 

  21. Huang J, Troccoli A, Coppin P (2014) An analytical comparison of four approaches to modelling the daily variability of solar irradiance using meteorological records. Renew Energy 72:195–202. https://doi.org/10.1016/j.renene.2014.07.015. http://linkinghub.elsevier.com/retrieve/pii/S0960148114004017

    Article  Google Scholar 

  22. Jamaly M, Bosch JL, Kleissl J (2013) Aggregate ramp rates of distributed photovoltaic systems in San Diego County. IEEE Trans Sustain Energy 4(2):519–526. https://doi.org/10.1109/TSTE.2012.2201966. http://ieeexplore.ieee.org/document/6232480/

    Article  Google Scholar 

  23. Kankiewicz A, Sengupta M, Li J (2011) Cloud meteorology and utility scale variability, Raleigh, NC

    Google Scholar 

  24. Kato T, Inoue T, Suzuki Y (2011) Estimation of total power output fluctuation of high penetration photovoltaic power generation system, Detroit, Michigan, USA

    Google Scholar 

  25. Krige D (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc South Africa, 119–139

    Google Scholar 

  26. Kuszamaul S, Ellis A, Stein J, Johnson L (2010) Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system, Honolulu, HI

    Google Scholar 

  27. Lauret P, Perez R, Mazorra Aguiar L, Tapachs E, Diagne HM, David M (2016) Characterization of the intraday variability regime of solar irradiation of climatically distinct locations. Sol Energy 125:99–110. https://doi.org/10.1016/j.solener.2015.11.032. http://linkinghub.elsevier.com/retrieve/pii/S0038092X15006490

    Article  Google Scholar 

  28. Lave M, Kleissl J (2010) Solar variability of four sites across the state of Colorado. Renew Energy 35(12):2867–2873. https://doi.org/10.1016/j.renene.2010.05.013. http://linkinghub.elsevier.com/retrieve/pii/S0960148110002314

    Article  Google Scholar 

  29. Lave M, Kleissl J (2013) Cloud speed impact on solar variability scaling application to the wavelet variability model. Sol Energy 91:11–21. https://doi.org/10.1016/j.solener.2013.01.023. http://linkinghub.elsevier.com/retrieve/pii/S0038092X13000406

    Article  Google Scholar 

  30. Lave M, Kleissl J, Arias-Castro E (2012) High-frequency irradiance fluctuations and geographic smoothing. Sol Energy 86(8):2190–2199. https://doi.org/10.1016/j.solener.2011.06.031. http://linkinghub.elsevier.com/retrieve/pii/S0038092X11002611

    Article  Google Scholar 

  31. Lave M, Kleissl J, Stein JS (WVM) A wavelet-based variability modelfor solar PV power plants. IEEE Trans Sustain Energy 4(2):501–509 (2013). https://doi.org/10.1109/TSTE.2012.2205716. http://ieeexplore.ieee.org/document/6269913/

  32. Lonij VP, Brooks AE, Cronin AD, Leuthold M, Koch K (2013) Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors. Sol Energy 97:58–66. https://doi.org/10.1016/j.solener.2013.08.002. http://linkinghub.elsevier.com/retrieve/pii/S0038092X13003125

    Article  Google Scholar 

  33. Lorenz E, Scheidsteger T, Hurka J, Heinemann D, Kurz C (2011) Regional PV power prediction for improved grid integration. Prog Photovolt Res Appl 19(7):757–771. https://doi.org/10.1002/pip.1033. http://doi.wiley.com/10.1002/pip.1033

    Article  Google Scholar 

  34. Lovejoy S (1982) Area-perimeter relation for rain and cloud areas. Science, 185–187. New Series

    Article  Google Scholar 

  35. Marcos J, Marroyo L, Lorenzo E, Garca M (2012) Smoothing of PV power fluctuations by geographical dispersion: smoothing of PV power fluctuations. Prog Photovolt: Res Appl 20(2):226–237. https://doi.org/10.1002/pip.1127. http://doi.wiley.com/10.1002/pip.1127

    Article  Google Scholar 

  36. Mazumdar BM, Saquib M, Das, AK (2014) An empirical model for ramp analysis of utility-scale solar PV power. Sol Energy 107:44–49. https://doi.org/10.1016/j.solener.2014.05.027. http://linkinghub.elsevier.com/retrieve/pii/S0038092X14002564

    Article  Google Scholar 

  37. Mills A, Wiser R (2010) Implications of wide-area geographic diversity for short-term variability of solar power. Technical report, Lawrence Berkeley National Laboratory Technical Report LBNL-3884E

    Google Scholar 

  38. Murata A, Yamaguchi H, Otani K (2009) A method of estimating the output fluctuation of many photovoltaic power generation systems dispersed in a wide area. Electr Eng Japan 166(4):9–19

    Article  Google Scholar 

  39. Nguyen A, Velay M, Schoene J, Zheglov V, Kurtz B, Murray K, Torre B, Kleissl J (2016) High PV penetration impacts on five local distribution networks using high resolution solar resource assessment with sky imager and quasi-steady state distribution system simulations. Sol Energy 132:221–235. https://doi.org/10.1016/j.solener.2016.03.019. http://linkinghub.elsevier.com/retrieve/pii/S0038092X16002061

    Article  Google Scholar 

  40. Norris B, Hoff T (2011) Determining storage reserves for regulating solar variability

    Google Scholar 

  41. Ole-Morten M, Yordanov G, Ranaweera I (2014) Short-term intermittency of solar irradiance in Southern Norway, pp 2635–2638

    Google Scholar 

  42. PEA: PREPA puerto rico electric power authority (2013). www.prepa.com

  43. Perez M (2015) Geographic dispersion and curtailment of VLS-PV electricity. Chapter 4 future technical options for the entire energy system, 2015. Technical report

    Google Scholar 

  44. Perez M, Fthenakis V (2012) Quantifying long time scale solar resource variability, Denver, CO

    Google Scholar 

  45. Perez MJ, Fthenakis VM (2015) On the spatial decorrelation of stochastic solar resource variability at long timescales. Sol Energy 117:46–58. https://doi.org/10.1016/j.solener.2015.04.020. http://linkinghub.elsevier.com/retrieve/pii/S0038092X1500208X

    Article  Google Scholar 

  46. Perez R, Aguiar R, Collares-Pereira M, Dumortier D, Estrada-Cajigal V, Gueymard C, Ineichen P, Littlefair P, Lund H, Michalsky J, Olseth J, Renn D, Rymes M, Skartveit A, Vignola F, Zelenka A (2001) Solar resource assessment a review. Solar energy-the state of the art. James & James, London, pp 497–575

    Google Scholar 

  47. Perez R, David M, Hoff TE, Jamaly M, Kivalov S, Kleissl J, Lauret P, Perez M (2016) Spatial and temporal variability of solar energy. Found Trends Renew Energy 1(1):1–44. https://doi.org/10.1561/2700000006. http://www.nowpublishers.com/article/Details/REN-006

    Article  Google Scholar 

  48. Perez R, Hoff T (2013) Solar resource variability. In: Kleissl J (ed) Solar resource assessment and forecasting. Elsevier

    Chapter  Google Scholar 

  49. Perez R, Hoff T, Dise J, Chalmers D, Kivalov S (2013) Mitigating short-term PV output variability, Paris, France

    Google Scholar 

  50. Perez R, Hoff T, Kivalov S (2011) Spatial & temporal characteristics of solar radiation variability, Kassel, Germany

    Google Scholar 

  51. Perez R, Ineichen P, Seals R, Zelenka A (1990) Making full use of the clearness index for parameterizing hourly insolation conditions. Sol Energy 45(2):111–114. https://doi.org/10.1016/0038-092X(90)90036-C. http://linkinghub.elsevier.com/retrieve/pii/0038092X9090036C

    Article  Google Scholar 

  52. Perez R, Kankiewicz A, Schlemmer J, Hemker K, Kivalov S (2014) A new operational solar resource forecast service for PV fleet simulation

    Google Scholar 

  53. Perez R, Kivalov S, Schlemmer J, Hemker K, Hoff T (2011) Parameterization of site-specific short-term irradiance variability. Sol Energy 85(7):1343–1353. https://doi.org/10.1016/j.solener.2011.03.016. http://linkinghub.elsevier.com/retrieve/pii/S0038092X11000995

    Article  Google Scholar 

  54. Perez R, Kivalov S, Schlemmer J, Hemker K, Hoff TE (2012) Short-term irradiance variability: preliminary estimation of station pair correlation as a function of distance. Sol Energy 86(8):2170–2176. https://doi.org/10.1016/j.solener.2012.02.027. http://linkinghub.elsevier.com/retrieve/pii/S0038092X12000928

    Article  Google Scholar 

  55. Perez R, Schlemmer J, Hemker K, Kivalov S, Kankiewicz A, Gueymard C (2015) Satellite-to-irradiance modeling a new version of the SUNY model

    Google Scholar 

  56. Remund J, Calhau C, Marcel D, Perret L (2015) Spatio-temporal variability of PV production. In: Spatio-temporal variability of PV production. Proceedings of the European photovoltaic solar energy conference and exhibition (EUPVSEC), Hamburg, Germany

    Google Scholar 

  57. Research CP, Behind-the-meter intelligence for distributed PV grid integration (2012). http://www.cleanpower.com/wp-content/uploads/SA-FleetView-Whitepaper-v060812.pdf

  58. Rowlands IH, Kemery BP, Beausoleil-Morrison I (2014) Managing solar-PV variability with geographical dispersion: An Ontarioa (Canada) case-study. Renew Energy 68:171–180. https://doi.org/10.1016/j.renene.2014.01.034. http://linkinghub.elsevier.com/retrieve/pii/S0960148114000639

    Article  Google Scholar 

  59. Sengupta M (2011) Measurement and modeling of solar and PV output variability, Raleigh, NC

    Google Scholar 

  60. Skartveit A, Olseth J (1992) The probability density and autocorrelation of short-term global and beam irradiance. Sol Energy 49(6):477–487. https://doi.org/10.1016/0038-092X(92)90155-4. http://linkinghub.elsevier.com/retrieve/pii/0038092X92901554

    Article  Google Scholar 

  61. SSE, N: Surface meteorology and solar energy (2012). http://eosweb.larc.nasa.gov/sse/

  62. Stein J, Ellis A, Hansen C, Chadliev V (2011) Simulation of 1-minute power output from utility-scale photovoltaic generation systems, Raleigh, NC

    Google Scholar 

  63. Stokes G, Schwartz S (1994) The atmospheric radiation measurement (ARM) program: programmatic background and design of the cloud and radiation test bed. Bull Am Meteorol Soc 1201–1221

    Article  Google Scholar 

  64. Tomson T (2010) Fast dynamic processes of solar radiation. Sol Energy 84(2):318–323. https://doi.org/10.1016/j.solener.2009.11.013. http://linkinghub.elsevier.com/retrieve/pii/S0038092X09002795

    Article  Google Scholar 

  65. Urquhart B, Kurtz B, Dahlin E, Ghonima M, Shields JE, Kleissl J (2014) Development of a sky imaging system for short-term solar power forecasting. Atmos Meas Tech Discuss 7(5):4859–4907. https://doi.org/10.5194/amtd-7-4859-2014. http://www.atmos-meas-tech-discuss.net/7/4859/2014/

    Article  Google Scholar 

  66. Vignola F (2001) Variability of solar radiation over short time intervals, Washington, D.C

    Google Scholar 

  67. Vindel J, Polo J (2014) Intermittency and variability of daily solar irradiation. Atmos Res 143:313–327

    Article  Google Scholar 

  68. Wiemken E, Beyer H, Heydenreich W, Kiefer K (2001) Power characteristics of PV ensembles: experiences from the combined power production of 100 grid connected PV systems distributed over the area of Germany. Sol Energy 70(6):513–518. https://doi.org/10.1016/S0038-092X(00)00146-8. http://linkinghub.elsevier.com/retrieve/pii/S0038092X00001468

    Article  Google Scholar 

  69. Woyte A, Belmans R, Nijs J (2007) Fluctuations in instantaneous clearness index: analysis and statistics. Sol Energy 81(2):195–206. https://doi.org/10.1016/j.solener.2006.03.001. http://linkinghub.elsevier.com/retrieve/pii/S0038092X0600079X

    Article  Google Scholar 

  70. Yang D, Dong Z, Reindl T, Jirutitijaroen P, Walsh WM (2014) Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage. Sol Energy 103:550–562. https://doi.org/10.1016/j.solener.2014.01.024. http://linkinghub.elsevier.com/retrieve/pii/S0038092X14000425

    Article  Google Scholar 

  71. Yordanov G, Mitdgard O, Norum L (2013) Overirradiance (cloud enhancement) events at high latitudes. IEEE J Photovolt 78:203–218

    Google Scholar 

  72. Zagouras A, Pedro HT, Coimbra CF (2015) On the role of lagged exogenous variables and spatiotemporal correlations in improving the accuracy of solar forecasting methods. Renew Energy 78, 203–218. https://doi.org/10.1016/j.renene.2014.12.071. http://linkinghub.elsevier.com/retrieve/pii/S0960148115000051

    Article  Google Scholar 

Download references

Acknowledgement

This chapter includes material originally developed for articles written in collaboration with Jan Kleissl of University of San Diego, California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perez, R., Lauret, P., Perez, M., David, M., Hoff, T.E., Kivalov, S. (2018). Solar Resource Variability. In: Perez, R. (eds) Wind Field and Solar Radiation Characterization and Forecasting. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-76876-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76876-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76875-5

  • Online ISBN: 978-3-319-76876-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics