Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter describes Wind3D, a mass-consistent diagnostic model with an updated vertical wind profile and atmospheric parameterization. First, a description of Wind3D is provided, along with their governing equations. Next, the finite element formulation of the model and the description of the solver of the corresponding linear system are presented. The model requires an initial wind field, interpolated from data obtained in a few points of the domain. It is constructed using a logarithmic wind profile that considers the effect of both stable boundary layer (SBL) and the convective boundary layer (CBL). One important aspect of mass-consistent models is that they are quite sensitive to the values of some of their parameters. To deal with this problem, a strategy for parameter estimation based on a memetic algorithm is presented. Finally, a numerical experiment over complex terrain is presented along with some concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burlando M, Georgieva E, Ratto CF (2007) Parameterisation of the planetary boundary layer for diagnostic wind models. Bound-Lay Meteorol 125:389–397. https://doi.org/10.1007/s10546-007-9220-7

    Article  Google Scholar 

  2. Montero G, Montenegro R, Escobar JM (1998) A 3-D diagnostic model for wind field adjustment. J Wind Eng Ind Aerod 74–76:249–261. https://doi.org/10.1016/S0167-6105(98)00022-1

    Article  Google Scholar 

  3. Sherman CA (1978) A mass-consistent wind model for wind fields over complex terrain. J Appl Meteorol 17(3):312–319

    Article  Google Scholar 

  4. Wagenbrenner NS, Forthofer JM, Lamb BK, Shannon KS, Butler BW (2016) Downscaling surface wind predictions from numerical weather prediction models in complex terrain with windninja. Atmos Chem Phys 16(8):5229–5241. https://doi.org/10.5194/acp-16-5229-2016, www.atmos-chem-phys.net/16/5229/2016/

    Article  Google Scholar 

  5. Mortensen NG, Landberg L, Troen I, Petersen EL (1993) Wind atlas analysis and application program (WAsP), vol 2: Users guide. Riso National Laboratory, Roskilde, Denmark

    Google Scholar 

  6. Walmsley JL, Taylor PA, Keith T (1986) A simple model of neutrally stratified boundary layer flow over complex terrain with surface roughness modulations (ms3djh/3r). Bound-Lay Meteorol 36(1–2):157–186. https://doi.org/10.1007/BF00117466

    Article  Google Scholar 

  7. Lopes AMG (2003) Windstation a software for the simulation of atmospheric flows over complex topography. Environ Model Softl 18(1):81–96. https://doi.org/10.1016/S1364-8152(02)00024-5

    Article  Google Scholar 

  8. Barnard JC (1991) An evaluation of three models designed for siting wind turbines in areas of complex terrain. Sol Energy 46(3):283–294. https://doi.org/10.1016/0038-092X(91)90096-F

    Article  Google Scholar 

  9. Walmsley JL, Troen IB, Demetrius P, Lalas DP, Mason PJ (1990) Surface-layer flow in complex terrain: comparison of models and full-scale observations. Bound-Lay Meteorol 52(3):259–281. https://doi.org/10.1007/BF00122090

    Article  Google Scholar 

  10. Homicz GF (2002) Three-dimensional wind field modeling: a review. SAND Report 2597. Technical Report, Sandia National Laboratories, Albuquerque, NM

    Google Scholar 

  11. Apsley DD, Castro IP (1997) Flow and dispersion over hills: comparison between numerical predictions and experimental data. J Wind Eng Ind Aerod 67–68:375–386. https://doi.org/10.1016/S0167-6105(97)00087-1

    Article  Google Scholar 

  12. Maurizi A, Palma JMLM, Castro FA (1998) Numerical simulation of the atmospheric flow in a mountainous region of the north of portugal. J Wind Eng Ind Aerod 74–76:219–228. https://doi.org/10.1016/S0167-6105(98)00019-1

    Article  Google Scholar 

  13. Uchida T, Ohya Y (1999) Numerical simulation of atmospheric flow over complex terrain. J Wind Eng Ind Aerod 81(1–3):283–293. https://doi.org/10.1016/S0167-6105(99)00024-0

    Article  Google Scholar 

  14. Montavon C (1998) Validation of a non-hydrostatic numerical model to simulate stratified wind fields over complex topography. J Wind Eng Ind Aerod 74–76:273–282

    Article  Google Scholar 

  15. Dong Z, Gao S, Fryrear DW (2001) Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation. J Arid Environ 49(3):485–505. https://doi.org/10.1006/jare.2001.0807

    Article  Google Scholar 

  16. Abtew W, Gregory JM, Borrelli J (1989) Wind profile: estimation of displacement height and aerodynamic roughness. Trans ASAE 32(2):0521–0527. https://doi.org/10.13031/2013.31034

  17. Ferragut L, Montenegro R, Montero G, Rodríguez E, Asensio MI, Escobar JM (2010) Comparison between 2.5-D and 3-D realistic models for wind field adjustment. J Wind Eng Ind Aerod 98(10–11):548–558 (2010). https://doi.org/10.1016/j.jweia.2010.04.004

    Article  Google Scholar 

  18. Montero G, Rodríguez E, Montenegro R, Escobar JM, González-Yuste JM (2005) Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model. Adv Eng Softw 36(1):3–10. https://doi.org/10.1016/j.advengsoft.2004.03.011

    Article  Google Scholar 

  19. Winter G, Montero G, Ferragut L, Montenegro R (1995) Adaptive strategies using standard and mixed finite elements for wind field adjustment. Sol Energy 54(1):49–56. http://www.sciencedirect.com/science/article/pii/0038092X9400100R

    Article  Google Scholar 

  20. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6):409–436

    Article  MathSciNet  Google Scholar 

  21. Montero G, Montenegro R, Escobar J, Rodríguez E (2004) Resolution of sparse linear systems of equations: the rpk strategy. In: Topping B, Soares CM (eds) Progress in engineering computational technology, Chap 5. Saxe-Coburg Publications, Stirlingshire, UK, pp 81–109

    Chapter  Google Scholar 

  22. Suárez A, Sarmiento H, Flórez E, García M, Montero G (2011) Updating incomplete factorization preconditioners for shifted linear systems arising in a wind model. J Comput Appl Math 235(8):2640–2646. https://doi.org/10.1016/j.cam.2010.11.015, http://www.sciencedirect.com/science/article/pii/S0377042710006321

    Article  MathSciNet  Google Scholar 

  23. Zilitinkevich SS, Johansson PE, Mironov DV, Baklanov A (1998) A similarity-theory model for wind profile and resistance law in stably stratified planetary boundary layers. J Wind Eng Ind Aerod 74–76:209–218

    Article  Google Scholar 

  24. Zilitinkevich SS, Tyuryakov SA, Troitskaya YI, Mareev EA (2012) Theoretical models of the height of the atmospheric boundary layer and turbulent entrainment at its upper boundary. Atmos Ocean Phys 48(1):150–160. https://doi.org/10.1134/S0001433812010148

    Article  Google Scholar 

  25. Zilitinkevich SS, Fedorovich EE, Shabalova MV (1992) Numerical model of a non-steady atmospheric planetary boundary layer, based on similarity theory. Bound-Lay Meteorol 59:387–411

    Article  Google Scholar 

  26. Montero G, Rodríguez E, Montenegro R, Escobar J, González-Yuste J (2005) Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model. Adv Eng Softw 36(1):3–10. https://doi.org/10.1016/j.advengsoft.2004.03.011, http://www.sciencedirect.com/science/article/pii/S0965997804000742. Evolutionary Optimization of Engineering Problems

    Article  Google Scholar 

  27. Oliver A, Rodríguez E, Escobar JM, Montero G, Hortal M, Calvo J, Cascón JM, Montenegro R (2015) Wind forecasting based on the harmonie model and adaptive finite elements. Pure Appl Geophys 172(1):109–120. https://doi.org/10.1007/s00024-014-0913-9

    Article  Google Scholar 

  28. Storn R, Price K: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. https://doi.org/10.1023/a:1008202821328

  29. Greiner D, Emperador JM, Winter G (2004) Single and multiobjective frame optimization by evolutionary algorithms and the auto-adaptive rebirth operator. Comput Methods Appl Mech Engrg 193(33–35):3711–3743. https://doi.org/10.1016/j.cma.2004.02.001

    Article  Google Scholar 

  30. Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16(5):1190–1208. https://doi.org/10.1137/0916069

    Article  MathSciNet  Google Scholar 

  31. Mohan M, Siddiqui TA (1998) Analysis of various schemes for the estimation of atmospheric stability classification. Atmos Environ 32(21):3775–3781. https://doi.org/10.1016/s1352-2310(98)00109-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez, E., Montero, G., Oliver, A. (2018). Wind Field Diagnostic Model. In: Perez, R. (eds) Wind Field and Solar Radiation Characterization and Forecasting. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-76876-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76876-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76875-5

  • Online ISBN: 978-3-319-76876-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics