Skip to main content

Characterization of Geographical and Meteorological Parameters

  • Chapter
  • First Online:
Book cover Wind Field and Solar Radiation Characterization and Forecasting

Part of the book series: Green Energy and Technology ((GREEN))

  • 614 Accesses

Abstract

This chapter is devoted to the introduction of some geographical and meteorological information involved in the numerical modeling of wind fields and solar radiation. First, a brief description of the topographical data given by a Digital Elevation Model and Land Cover databases is provided. In particular, the Information System of Land Cover of Spain (SIOSE) is considered. The study is focused on the roughness length and the displacement height parameters that appear in the logarithmic wind profile, as well as in the albedo related to solar radiation computation. An extended literature review and characterization of both parameters are reported. Next, the concept of atmospheric stability is introduced from the Monin–Obukhov similarity theory to the recent revision of Zilitinkevich of the Neutral and Stable Boundary Layers (SBL). The latter considers the effect of the free-flow static stability and baroclinicity on the turbulent transport of momentum and of the Convective Boundary Layers (CBL), more precisely, the scalars in the boundary layer, as well as the model of turbulent entrainment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acreman MC, Harding RJ, Lloyd CR, McNeil DD (2003) Evaporation characteristics of wetlands: experience from a wet grassland and a reedbed using eddy correlation measurements. Hydrol Earth Syst Sci 7(1):11–21. https://doi.org/10.5194/hess-7-11-2003

    Article  Google Scholar 

  2. Adrian G, Fiedler F (1991) Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations. Beitr Phys Atmos 64:27–48

    MATH  Google Scholar 

  3. Belward AS, Estes JE, Kline KD (1999) The IGBP-DIS global 1-km land-cover data set DISCover: A project overview. Photogramm Eng Rem S 65(9):1013–1020

    Google Scholar 

  4. Blocken B, van der Hout A, Dekker J, Weiler O (2015) CFD simulation of wind flow over natural complex terrain: case study with validation by field measurements for Ria de Ferrol, Galicia, Spain. J Wind Eng Ind Aerod 147:43–57

    Article  Google Scholar 

  5. Blumberg DG, Greeley R (1993) Field studies of aerodynamic roughness length. J Arid Environ 25:39–48

    Article  Google Scholar 

  6. Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide - Addendum 2000. Technical Report European Environment Agency, Copenhagen

    Google Scholar 

  7. Bosveld FC (1997) Derivation of fluxes from profiles over a moderately homogeneous forest. Bound-Lay Meteorol 84(2):289–327. https://doi.org/10.1023/a:1000453629876

    Article  Google Scholar 

  8. Bottema M, Mestayer PG (1998) Urban roughness mapping—validation techniques and some first results. J Wind Eng Ind Aerod 74–76:163–173. https://doi.org/10.1016/s0167-6105(98)00014-2

    Article  Google Scholar 

  9. Brooks FA (1959) An introduction to physical micrometeorology. University of California, Davis, California

    Google Scholar 

  10. Brutsaert W (1982) Evaporation into the atmosphere. D. Reidel Publish Company, Dordrecht, Holland

    Book  Google Scholar 

  11. Campbell DR, Lavoie C, Rochefort L (2002) Wind erosion and surface stability in abandoned milled peatlands. Can J Soil Sci 82(1):85–95. https://doi.org/10.4141/s00-089

    Article  Google Scholar 

  12. Chang Y, Tan J, Grimmond S, Tang Y (2015) Distribution of aerodynamic roughness based on land cover and DEM-A case study in Shanghai, China. In: ICUC9—9th international conference on urban climate jointly with 12th symposium on the urban environment

    Google Scholar 

  13. Claassen HC, Riggs AC (1993) An estimate of the roughness length and displacement height of Sonoran Desert vegetation, South-Central Arizona. U.S. Geological Survey. Technical Report Water-Resources Investigations Report 92-4065, Denver, Colorado

    Google Scholar 

  14. Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J Roy Meteorol Soc 130(599):1349–1372. https://doi.org/10.1256/qj.03.40

    Article  Google Scholar 

  15. Colin J, Faivre R (2010) Aerodynamic roughness length estimation from very high-resolution imaging lidar observations over the heihe basin in china. Hydrol Earth Syst Sci 14:2661–2669. https://doi.org/10.5194/hess-14-2661-2010

    Article  Google Scholar 

  16. Davenport AG (1967) The dependence of wind loads on meteorological parameters. In: Conference on wind loads on buildings. University of Toronto Press, Toronto. Paper 2

    Google Scholar 

  17. Deacon EL (1953) Vertical profiles of mean wind in the surface layers of the atmosphere, Meteorol Off Geoph Mem 91. Technical Report Meteorological Office, United Kingdom

    Google Scholar 

  18. DeBruin HAR, Moore CJ (1985) Zero-plane displacement and roughness length for tall vegetation, derived from a simple mass conservation hypothesis. Bound-Lay Meteorol 31(1):39–49

    Article  Google Scholar 

  19. Dobos E (2006) Albedo. Encyclopedia of soil science, vol 2, pp 24–25

    Google Scholar 

  20. Dong Z, Gao S, Fryrear DW (2001) Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation. J Arid Environ 49(3):485–505. https://doi.org/10.1006/jare.2001.0807

    Article  Google Scholar 

  21. Dorman JL, Sellers PJA (1989) Global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (SiB). J Appl Meteorol 28(9):833–855

    Article  Google Scholar 

  22. Drennan WM, Taylor PK, Yelland MJ (2005) Parameterizing the sea surface roughness. J. Phys. Oceanogr. 35(5):835–848. https://doi.org/10.1175/jpo2704.1

    Article  Google Scholar 

  23. ESDU (1972) Characteristics of wind speed in the lower layers of the atmosphere near the ground: Strong winds (neutral atmosphere). Technical Report Engineering Sciences Data Unit, Regent Street, London, UK

    Google Scholar 

  24. Fry JA, Xian G, Jin S, Dewitz JA, Homer CG, Yang L, Barnes CA, Herold ND, Wickham JD (2011) Completion of the 2006 national land cover database for the conterminous United States. Photogramm Eng Rem S 77(9):858–864

    Google Scholar 

  25. Gao Z, Wang L, Bi X, Song Q, Gao Y (2012) A simple extension of “an alternative approach to sea surface aerodynamic roughness” by Zhiqiu Gao, Qing Wang, and Shouping Wang. J Geophys Res 117(D16110):1–8. https://doi.org/10.1029/2012jd017478

    Google Scholar 

  26. Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near-surface layer. Q J Roy Meteorol Soc 106(450):803–819. https://doi.org/10.1002/qj.49710645011

    Article  Google Scholar 

  27. Giambelluca TW, Hölscher D, Bastos TX, Frazão RR, Nullet MA, Ziegler AD (1997) Observations of albedo and radiation balance over postforest land surfaces in the eastern amazon basin. J Clim 10(5):919–928

    Article  Google Scholar 

  28. Graefe J (2004) Roughness layer corrections with emphasis on SVAT model applications. Agr Forest Meteorol 124(3–4):237–251. https://doi.org/10.1016/j.agrformet.2004.01.003

    Article  Google Scholar 

  29. Graf A, van de Boer A, Moene A, Vereecken H (2014) Intercomparison of methods for the simultaneous estimation of zero-plane displacement and aerodynamic roughness length from single-level eddy-covariance data. Bound-Lay Meteorol 151(2):373–387. https://doi.org/10.1007/s10546-013-9905-z

    Article  Google Scholar 

  30. Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9):1262–1292

    Article  Google Scholar 

  31. Hammond DS, Chapman L, Thornes JE (2012) Roughness length estimation along road transects using airborne LIDAR data. Meteorol Appl 19(4):420–426. https://doi.org/10.1002/met.273

    Article  Google Scholar 

  32. Hanna SR, Chang JC (1992) Boundary layer parameterizations for applied dispersion modeling over urban areas. Bound-Lay Meteorol 58(3):229–259. https://doi.org/10.1007/BF02033826

    Article  Google Scholar 

  33. Hansen FV (1993) Albedos. Technical Report ARL-TR-57, U.S. Army Research Laboratory, AMSRL-BE, White Sands Missile Range, NM 88002-5501

    Google Scholar 

  34. Hansen FV (1993) Surface roughness lengths. Technical Report ARL-TR-61, U.S. Army Research Laboratory, AMSRL-BE, White Sands Missile Range, NM 88002-5501

    Google Scholar 

  35. Hazeu GW, Schuiling C, Dorland GJ, Roerink GJ, Naeff HSD, Smidt RA (2014) Landelijk Grondgebruiksbestand Nederland versie 7 (LGN7). vervaardiging, nauwkeurigheid en gebruik. Technical Report Alterra Wageningen UR, Wageningen. In Dutch

    Google Scholar 

  36. Hicks BB, Hyson P, Moore CJ (1975) A study of eddy fluxed over a forest. J Appl Meteorol 14(1):58–66

    Article  Google Scholar 

  37. Holland DE, Berglund JA, Spruce JP, McKellip RD (2008) Derivation of effective aerodynamic surface roughness in urban areas from airborne lidar terrain data. J Appl Meteorol Clim 47(10):2614–2626. https://doi.org/10.1175/2008JAMC1751.1

    Article  Google Scholar 

  38. Holt T, Pullen J (2007) Urban canopy modeling of the New York city metropolitan area: a comparison and validation of single- and multilayer parameterizations. Mon Weather Rev 135(5):1906–1930. https://doi.org/10.1175/mwr3372.1

    Article  Google Scholar 

  39. Hsu SA (1974) A dynamic roughness equation and its application to wind stress determination at the air-sea interface. J Phys Oceanogr 4(1):116–120. https://doi.org/10.1175/1520-0485(1974)004<0116:ADREAI>2.0.CO;2

    Article  Google Scholar 

  40. van den Hurk BJJM (1995) Sparse canopy parameterization for meteorological models. PhD thesis, Department of Meteorology, WAU, Wageningen, The Netherlands

    Google Scholar 

  41. Hurtalová T, Matejka F (1999) Surface characteristics and energy fluxes above different plant canopies. Agr Forest Meteorol 98–99:491–500. https://doi.org/10.1016/S0168-1923(99)00118-5

    Article  Google Scholar 

  42. Jacobs AFG, Boxel JH (1988) Changes of the zero-plane displacement and aerodynamic roughness length of maize during the growing season. Agr Forest Meteorol 42:53–62. https://doi.org/10.1016/0168-1923(88)90066-4

    Article  Google Scholar 

  43. Kalma JD, Fuchs M (1976) Citrus orchards. In: Monteith JL (ed) Vegetation and the atmophere. Academic Press, London

    Google Scholar 

  44. Kanda M, Kanega M, Kawai T, Moriwaki R, Sugawara H (2007) Roughness lengths for momentum and heat derived from outdoor urban scale models. J Appl Meteorol Clim 46(7):1067–1079. https://doi.org/10.1175/jam2500.1

    Article  Google Scholar 

  45. Kanda M, Moriwaki R, Roth M, Oke T (2002) Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Bound-Lay Meteorol 105(1):177–193. https://doi.org/10.1023/a:1019668424982

    Article  Google Scholar 

  46. Kimura R, Kondo J (1998) Heat balance model over a vegetated area and its application to a paddy field. J Meteorol Soc Jpn Ser II 76(6):937–953

    Article  Google Scholar 

  47. Kondo J, Yamazawa H (1986) Aerodynamic roughness over an inhomogeneous ground surface. Bound-Lay Meteorol 35(4):331–348. https://doi.org/10.1007/bf00118563

    Article  Google Scholar 

  48. Kustas WP, Choudhury BJ, Kunkel KE, Gay LW (1989) Estimate of the aerodynamic roughness parameters over an incomplete canopy cover of cotton. Agr Forest Meteorol 46(1–2):91–105. https://doi.org/10.1016/0168-1923(89)90114-7

    Article  Google Scholar 

  49. Landsberg J, Powell D, Butler D (1973) Microclimate in an apple orchard. J Appl Ecol 881–896

    Article  Google Scholar 

  50. Larson DW, Matthes U, Kelly PE (2005) Cliff ecology: pattern and process in cliff ecosystems. Cambridge University Press

    Google Scholar 

  51. Lettau HH (1969) Note on the aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol 8(5):828–832

    Article  Google Scholar 

  52. Li X, Feng G, Sharratt B, Zheng Z (2015) Aerodynamic properties of agricultural and natural surfaces in northwestern Tarim Basin. Agr Forest Meteorol 204:37–45. https://doi.org/10.1016/j.agrformet.2015.01.005

    Article  Google Scholar 

  53. MacArthur CD, Haines PA (1982) The roughness lengths associated with regions of heterogeneous vegetation and elevation. Technical Report Contract DAAD7-8-D-0206, University of Dayton Research Institute, Dayton, OH 45469

    Google Scholar 

  54. Mahrt L, Vickers D, Edson J, Wilczak JM, Hare J, Højstrup J (2001) Vertical structure of turbulence in offshore flow during rasex. Bound-Lay Meteorol 100(1):47–61

    Article  Google Scholar 

  55. Medeiros SC, Hagen SC, Weishampel JF (2012) Comparison of floodplain surface roughness parameters derived from land cover data and field measurements. J Hydrol 452–453:139–149. https://doi.org/10.1016/j.jhydrol.2012.05.043

    Article  Google Scholar 

  56. Millward-Hopkins JT, Tomlin AS, Ma L, Ingham D, Pourkashanian M (2011) Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights. Bound-Lay Meteorol 141(3):443–465. https://doi.org/10.1007/s10546-011-9640-2

    Article  Google Scholar 

  57. Mochida A, Murakami S, Ojima T, Kim S, Ooka R, Sugiyama H (1997) CFD analysis of mesoscale climate in the greater tokyo area. J Wind Eng Ind Aerod 67-68:459–477. https://doi.org/10.1016/s0167-6105(97)00060-3

    Article  Google Scholar 

  58. Molero-Paredes T, Matos A (2008) Efectos de la inducción artificial de la poliploidia en plantas de aloe vera(l.). Boletín del Centro de Investigaciones Biológicas 42(1):111–133. (In Spanish)

    Google Scholar 

  59. Monteith JL, Unsworth MH (1990) Principles of environmental physics. Edward Arnold, LTD, New York, 291 pp

    Google Scholar 

  60. Montero G, Rodríguez E, Oliver A, Calvo J, Escobar JM, Montenegro R (2018) Optimisation technique for improving wind downscaling results by estimating roughness parameters. J Wind Eng Ind Aerod 174:411–423

    Article  Google Scholar 

  61. Moore PA, Pypker TG, Waddington JM (2013) Effect of long-term water table manipulation on peatland evapotranspiration. Agric Forest Meteorol 178–179:106–119. https://doi.org/10.1016/j.agrformet.2013.04.013

    Article  Google Scholar 

  62. Nakai T, Sumida A, Daikoku K, Matsumoto K, van der Molen MK, Kodama Y, Kononov AV, Maximov TC, Dolman AJ, Yabuki H, Hara T, Ohta T (2008) Parameterisation of aerodynamic roughness over boreal, cool- and warm-temperate forests. Agric Forest Meteorol 148(12):1916–1925. https://doi.org/10.1016/j.agrformet.2008.03.009

    Article  Google Scholar 

  63. Nakai T, Sumida A, Matsumoto K, Daikoku K, Iida S, Park H, Miyahara M, Kodama Y, Kononov AV, Maximov TC, Yabuki H, Hara T, Ohta T (2008) Aerodynamic scaling for estimating the mean height of dense canopies. Bound-Lay Meteorol 128(3):423–443. https://doi.org/10.1007/s10546-008-9299-5

    Article  Google Scholar 

  64. National Technique Team SIOSE (2011) Documento Técnico SIOSE2005—Versión 2.2. Technical Report, D.G. Instituto Geográfico Nacional, Madrid. (In Spanish)

    Google Scholar 

  65. National Technique Team SIOSE (2011) Manual de Fotointerpretación SIOSE—Versión 2. Technical Report D.G. Instituto Geográfico Nacional, Madrid. (In Spanish)

    Google Scholar 

  66. Oke TR (2002) Boundary layer climates. Routledge

    Google Scholar 

  67. Parlange MB, Brutsaert W (1989) Regional roughness of the landes forest and surface shear stress under neutral conditions. Bound-Lay Meteorol 48(1–2):69–81. https://doi.org/10.1007/BF00121783

    Article  Google Scholar 

  68. Pires LBM, Fisch G, Gielow R, Souza LF, Avelar AC, De-Paula IB, Girardi RDM (2015) A study of the internal boundary layer generated at the alcantara space center. Am J Environ Eng 5(1A):82–164. https://doi.org/10.5923/s.ajee.201501.08

  69. Qualls RJ, Brutsaert W (1996) Effect of vegetation density on the parameterization of scalar roughness to estimate spatially distributed sensible heat fluxes. Water Resour Res 32(3):645–652

    Article  Google Scholar 

  70. Randall JM (1969) Wind profiles in an orchard plantation. Agr Forest Meteorol 6(6):439–452

    Article  Google Scholar 

  71. Ratto C (1996) The aiolos and wlnds codes. In: Modelling of atmospheric flow fields, World Scientific, pp 421–431

    Chapter  Google Scholar 

  72. Riou C, Pieri P, Valancogne C (1987) Variation de la vitesse du vent à l’intérieur et au-dessus d’une vigne. Agric Forest Meteorol 39:143–154 In French

    Article  Google Scholar 

  73. Roballo ST, Fisch G (2008) Escoamento atmosfétrico no Centro de Lançamento de Alcântara (CLA): Parte I - Aspectos observcionais. Rev Bras Meteorol 23(4):510–519. https://doi.org/10.1590/S0102-77862008000400010. (In Portuguese)

    Article  Google Scholar 

  74. Rotach MW (1994) Determination of the zero plane displacement in an urban environment. Bound-Lay Meteorol 67(1–2):187–193. https://doi.org/10.1007/BF00705513

    Article  Google Scholar 

  75. Sacré C, Moisselin JM, Sabre M, Flori JP, Dubuisson B (2007) A new statistical approach to extreme wind speeds in france. J Wind Eng Ind Aerod 95(9–11):1415–1423. https://doi.org/10.1016/j.jweia.2007.02.013

    Article  Google Scholar 

  76. Schmid HP, Bunzli B (1995) The influence of surface texture on the effective roughness length. Q J Roy Meteorol Soc 121(521):1–21. https://doi.org/10.1002/qj.49712152102

    Article  Google Scholar 

  77. Sempreviva, A.: Roughness changes: response of neutral boundary layers. In: Modelling of atmospheric flow fields, World Scientific, pp 213–245

    Chapter  Google Scholar 

  78. Shimoyama K, Hiyama T, Fukushima Y, Inoue G (2004) Controls on evapotranspiration in a west siberian bog. J Geophys Res Atmos 109(D8):1–12. https://doi.org/10.1029/2003JD004114

    Article  Google Scholar 

  79. Stanhill G (1969) A simple instrument for the field measurement of a turbulent diffusion flux. J Appl Meteorol 8(4):509–513

    Article  Google Scholar 

  80. Steyaert LT, Knox RG (2008) Reconstructed historical land cover and biophysical parameters for studies of land-atmosphere interactions within the eastern united states. J Geophys Res Atmos 113(D2)

    Google Scholar 

  81. Su Z (2006) An introduction to the surface energy balance system (SEBS). Lecture notes, ESA TIGER capacity building facility 1st training course on advanced optical remote sensing

    Google Scholar 

  82. Su Z, Schmugge T, Kustas WP, Massman WJ (2001) An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J Appl Meteorol 40(11):1933–1951

    Article  Google Scholar 

  83. Takagi K, Miyata A, Harazono Y, Ota N, Komine M, Yoshimoto M (2003) An alternative approach to determining zero-plane displacement, and its application to a lotus paddy field. Agric Forest Meteorol 115:173–181

    Article  Google Scholar 

  84. Tanaka S, Sugawara H, Narita K, Yokoyama H, Misaka I, Matsushima D (2011) Zero-Plane displacement height in a highly built-up area of Tokyo. SOLA 7:93–96. https://doi.org/10.2151/sola.2011-024

    Article  Google Scholar 

  85. Taylor PA (1987) Comments and further analysis on effective roughness lengths for use in numerical three-dimensional models. Bound-Lay Meteorol 39:403–418

    Article  Google Scholar 

  86. Thom AS (1971) Momentum absorption by vegetation. Q J Roy Meteorol Soc 97(414):414–428

    Article  Google Scholar 

  87. Thom AS (1972) Momentum, mass and heat exchange of vegetation. Q J Roy Meteorol Soc 98(415):124–134

    Article  Google Scholar 

  88. Tian X, Li ZY, van der Tol C, Su Z, Li X, He QS, Bao YF, Chen EX, Li LH (2011) Estimating zero-plane displacement height and aerodynamic roughness length using synthesis of lidar and spot-5 data. Remote Sens Environ 115(9):2330–2341. https://doi.org/10.1016/j.rse.2011.04.033

    Article  Google Scholar 

  89. Tieleman HW (2003) Roughness estimation for wind-load simulation experiments. J Wind Eng Ind Aerod 91(9):1163–1173. https://doi.org/10.1016/S0167-6105(03)00058-8

    Article  Google Scholar 

  90. Troen I, Petersen EL (1989) European wind atlas, 300 pp. Technical Report Risø National Laboratory, Roskilde, Denmark

    Google Scholar 

  91. van Wijk BM (2011) Predicting the rooftop wind climate for urban wind energy in the Rotterdam - Delft - Zoetermeer region. new approaches for implementing urban height data in the wind atlas method. Technical Report Eindhoven University of Technology, Eindhoven. 114 pp

    Google Scholar 

  92. Verhoef A, McNaughton KG, Jacobs AFG (1997) A parameterization of momentum roughness length and displacement height for a wide range of canopy densities. Hydrol Earth Syst Sci 1(1):81–91. https://doi.org/10.5194/hess-1-81-1997

    Article  Google Scholar 

  93. Villalobos FJ, Orgaz F, Testi L, Fereres E (2000) Measurement and modeling of evapotranspiration of olive (Olea europaea L.) orchards. Eur J Agron 13(2–3):155–163. https://doi.org/10.1016/s1161-0301(00)00071-x

    Article  Google Scholar 

  94. Warner TT (2009) Desert meteorology. Cambridge University Press

    Google Scholar 

  95. Weiss A, Allen LH (1976) Vertical and horizontal air flow above rows of a vineyard. Agr Meteorol 17(6):433–452. https://doi.org/10.1016/0002-1571(76)90021-2

    Article  Google Scholar 

  96. Wieringa J (1992) Updating the davenport roughness classification. J Wind Eng Ind Aerod 41(1–3):357–368. https://doi.org/10.1016/0167-6105(92)90434-C

    Article  Google Scholar 

  97. WindSim AS (2014) Wind Resource Assessment—Annual Energy Production. Project: Hundhammer_WS_Express. Technical Report WindSim AS, Fjordgaten 15, N- 3125 Tønsberg, Norway. 29 pp

    Google Scholar 

  98. de Wit AJW, Van der Heijden TGC, Thunnissen HAM (1999) Vervaardiging en nauwkeurigheid van het LGN3-grondgebruiksbestand. Technical Report DLO-Staring Centrum, Wageningen In Dutch

    Google Scholar 

  99. Yang K, Koike T, Ishikawa H, Kim J, Li X, Liu H, Liu S, Ma Y, Wang J (2008) Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. J Appl Meteorol Clim 47(1):276–290. https://doi.org/10.1175/2007jamc1547.1

    Article  Google Scholar 

  100. Yang R, Friedl MA (2003) Determination of roughness lengths for heat and momentum over boreal forests. Bound-Lay Meteorol 107(3):581–603. https://doi.org/10.1023/a:1022880530523

    Article  Google Scholar 

  101. Yoon JJ, Shim JS, Park KS, Lee JC (2014) Numerical experiments of storm winds, surges, and waves on the southern coast of Korea during Typhoon Sanba: the role of revising wind force. Nat Hazards Earth Sys Sci 14(12):3279–3295. https://doi.org/10.5194/nhess-14-3279-2014

    Article  Google Scholar 

  102. Zannetti P (1990) Air pollution modeling. Comp. Mech. Publications, Southampton (UK)

    Book  Google Scholar 

  103. Zilitinkevich SS, Esau IN (2002) On integral measures of the neutral barotropic planetary boundary layer. Bound-Lay Meteorol 104:371–379

    Article  Google Scholar 

  104. Zilitinkevich SS, Tyuryakov SA, Troitskaya YI, Mareev EA (2012) Theoretical models of the height of the atmospheric boundary layer and turbulent entrainment at its upper boundary. Atmos Ocean Phys 48(1):150–160. https://doi.org/10.1134/S0001433812010148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Montero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montero, G., Rodríguez, E., Oliver, A. (2018). Characterization of Geographical and Meteorological Parameters. In: Perez, R. (eds) Wind Field and Solar Radiation Characterization and Forecasting. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-76876-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76876-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76875-5

  • Online ISBN: 978-3-319-76876-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics