Skip to main content

A Geometrical Approach for the Computation and Rotation of Spherical Harmonics and Legendre Functions up to Ultra-High Degree and Order

  • Chapter
  • First Online:
Geometrical Theory of Satellite Orbits and Gravity Field

Part of the book series: Springer Theses ((Springer Theses))

  • 1000 Accesses

Abstract

In this section we introduce a new algorithm for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions up to ultra-high degree and order. The algorithm is based on the geometric rotation of Legendre polynomials in Hilbert space. It is shown that Legendre polynomials can be calculated using geometrical rotations and can be treated as vectors in the Hilbert space leading to unitary Hermitian rotation matrices with geometric properties. We use the term geometrical rotations because although rotation itself is not governed by gravity and it can be used as a proxy to represent a gravity field geometrically. This novel method allows the calculation of spherical harmonics up to an arbitrary degree and order, i.e., up to degree and order 106 and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. J Geophys Res 92:1287–1294

    Google Scholar 

  • Arfken GB, Weber HJ, Weber H-J (1995) Mathematical methods for physicists, 4th edn. Academic Press

    Chapter  Google Scholar 

  • Balmino G, Borderies N (1978) Gravitational potential of solid bodies in the solar system. Celest Mech Dyn Astron 17:113–119. https://doi.org/10.1007/BF01371322

    Article  Google Scholar 

  • Casotto S (1993) The mapping of Kaula’s solution into the orbital reference frame. Celest Mech Dyn Astron 55:223–241. https://doi.org/10.1007/BF00692511

    Article  Google Scholar 

  • Edmonds AR (1960) Angular momentum in quantum mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Emeljanov NV, Kanter AA (1989) A method to compute inclination functions and their derivatives. Manuscripta Geodaet 14:77–83

    Google Scholar 

  • Giacaglia GEO, Burša M (1980) Transformations of spherical harmonics and applications to geodesy and satellite theory. Stud Geophys Geod 24:1–11. https://doi.org/10.1007/BF01628375

    Article  Google Scholar 

  • Goldstein JD (1984) The effect of coordinate system rotations on spherical harmonic expansions: a numerical method. J Geophys Res 89:4413–4418

    Article  Google Scholar 

  • Gooding R, Wagner C (2008) On the inclination functions and a rapid stable procedure for their evaluation together with derivatives. Celest Mech Dyn Astron 101:247–272. https://doi.org/10.1007/s10569-008-9145-6

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H Freeman & Co Ltd

    Article  Google Scholar 

  • Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. University Press, Cambridge

    Google Scholar 

  • Holmes SA, Featherstone WE (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J Geodesy 76:279–299. https://doi.org/10.1007/s00190-002-0216-2

    Article  Google Scholar 

  • Ilk KH (1983) Ein Beitrag zur Dynamik ausgedehnter Körper: Gravitationswechselwirkung. Beck, München

    Google Scholar 

  • Jekeli C, Lee J, Kwon J (2007) On the computation and approximation of ultra-high-degree spherical harmonic series. J Geodesy 81:603–615. https://doi.org/10.1007/s00190-006-0123-z

    Article  Google Scholar 

  • Kaula WM (1961) Analysis of Gravitational and Geometric Aspects of Geodetic Utilization of Satellites. Geophys J Int 5:104–133. https://doi.org/10.1111/j.1365-246X.1961.tb00417.x

    Article  Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy: applications of satellites to Geodesy. Blaisdell Publishing Company, Waltham, Massachusettss

    Google Scholar 

  • Kleusberg A (1980) The similarity transformation of the gravitational potential close to the indentity. Manuscripta Geodaet 5:241–256

    Google Scholar 

  • Koepf W (1998) Hypergeometric summation. Vieweg Verlag

    Chapter  Google Scholar 

  • Libbrecht KG (1985) Practical considerations for the generation of large-order spherical harmonics. Sol Phys 99:371–373. https://doi.org/10.1007/BF00157320

    Article  Google Scholar 

  • Masters G, Richards-Dinger K (1998) On the efficient calculation of ordinary and generalized spherical harmonics. Geophys J Int 135:307–309. https://doi.org/10.1046/j.1365-246X.1998.00622.x

    Article  Google Scholar 

  • Press HW, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rosborough GW, Tapley BD (1987) Radial, transverse and normal satellite position perturbations due to the geopotential. Celest Mech Dyn Astron 40:409–421. https://doi.org/10.1007/BF01235855

    Article  Google Scholar 

  • Schmidt A (1899) Formeln zur Transformation der Kugelfunktionen bei linearer Anderung des Koordinatensystems. Zeitschrift für Mathematik und Physik 44:327–335

    Google Scholar 

  • Smith JM, Olver FWJ, Lozier DW (1981) Extended-range arithmetic and normalized legendre polynomials. ACM Trans Math Softw 7:93–105. https://doi.org/10.1145/355934.355940

    Article  Google Scholar 

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. PhD Thesis, DGK Reihe C, TU München

    Google Scholar 

  • Svehla D (2010) Geometry approach to model satellite dynamics based on numerical integration or analytical theory. In: 38th COSPAR scientific assembly 2010. Bremen, Germany

    Google Scholar 

  • Švehla D (2008) Combination of kinematic orbit and analytical perturbation theory for the determination of precise orbit and gravity field. EGU General Assembly 2008, Vienna, Austria, Geophysical Research Abstracts, vol. 10, EGU2008-A-11428, 2008 SRef-ID: 1607–7962/gra/EGU2008-A-11428

    Google Scholar 

  • Wenzel HG (1998) Ultra high degree geopotential models GPM98A and GPM98B to degree 1800. In: Proceedings of the joint meeting int gravity commission and int geoid commission, Budapest, pp 71–80

    Google Scholar 

  • Wigner EP (1959) Group theory and its application to quantum mechanics of atomic spectra. Academic Press Inc, New York

    Google Scholar 

  • Wittwer T, Klees R, Seitz K, Heck B (2008) Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic. J Geodesy 82:223–229. https://doi.org/10.1007/s00190-007-0172-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drazen Svehla .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Svehla, D. (2018). A Geometrical Approach for the Computation and Rotation of Spherical Harmonics and Legendre Functions up to Ultra-High Degree and Order. In: Geometrical Theory of Satellite Orbits and Gravity Field . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-76873-1_26

Download citation

Publish with us

Policies and ethics