Skip to main content

The First Geometric POD of LEO Satellites—A Piece of History

  • Chapter
  • First Online:
  • 1026 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The very first precise geometric (i.e., kinematic) orbit determination of a LEO satellite was presented in Švehla and Rothacher (2002), where for the first time double-difference ambiguity resolution was demonstrated using the CHAMP satellite in LEO orbit and the ground IGS network. In Švehla and Rothacher (2003a, b) and later in Švehla and Rothacher (2005a, b) geometric precise orbit determination (POD) was demonstrated to cm-level accuracy and presented as an established technique and as very attractive for gravity field determination. Here we give a chronological overview of the development of the method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altamimi Z, Collilieux X, Métivier L (2011) J Geod 85:457. https://doi.org/10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Bauersima I (1983) NAVSTAR global positioning system (GPS) I. Berne, Switzerland

    Google Scholar 

  • Baur O (2013) Greenland mass variation from time-variable gravity in the absence of GRACE. Geophys Res Lett 40:4289–4293. https://doi.org/10.1002/grl.50881

    Article  Google Scholar 

  • Baur O, Bock H, Ditmar P et al (2013) Comparison of GOCE-GPS gravity fields derived by different approaches. EGU 2013, Vienna, Austria

    Google Scholar 

  • Baur O, Grafarend EW (2006) High-performance GOCE gravity field recovery from gravity gradient tensor invariants and kinematic orbit information. In: Flury J, Rummel R, Reigber C et al (eds) Observation of the earth system from space. Springer, Heidelberg, pp 239–253

    Chapter  Google Scholar 

  • Beutler G (1977) Integrale Auswertung von Satellitenbeobachtungen. SGK, Band 33, Zurich, Schwitzerland

    Google Scholar 

  • Bock H (2003) Efficient Methods for Determining Precise Orbits of Low Earth Orbiters Using the Global Positioning System. PhD Thesis, Universität Bern, Schwitzerland

    Google Scholar 

  • Bock H, Jäggi A, Meyer U et al (2011) GPS-derived orbits for the GOCE satellite. J Geod. https://doi.org/10.1007/s00190-011-0484-9

    Article  Google Scholar 

  • Bock H, Jäggi A, Svehla D, Beutler G, Hugentobler U, Visser P (2007) Precise orbit determination for the GOCE satellite using GPS. Adv Space Res 39(10):1638–1647. https://doi.org/10.1016/j.asr.2007.02.053,2007

    Article  Google Scholar 

  • Bock H, Jäggi A, Beutler G, Meyer U (2014) GOCE: precise orbit determination for the entire mission. J Geod 1–14. https://doi.org/10.1007/s00190-014-0742-8

  • Byun SH (2003) Satellite orbit determination using triple-differene GPS carrier phase in pure kinematic mode. J. Geodesy 76:569–585

    Article  Google Scholar 

  • Colombo OL (1986) Ephemeris errors of GPS satellites. Bull Géodésique 60:64–84. https://doi.org/10.1007/BF02519355

    Article  Google Scholar 

  • Ditmar P, Kuznetsov V, van der Sluijs A et al (2006) “DEOS_CHAMP-01C_70”: a model of the Earth’s gravity field computed from accelerations of the CHAMP satellite. J Geodesy 79:586–601. https://doi.org/10.1007/s00190-005-0008-6

    Article  Google Scholar 

  • Dow JM, Neilan RE, Gendt G (2005) The international GPS service: celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36:320–326. https://doi.org/10.1016/j.asr.2005.05.125

    Article  Google Scholar 

  • Fengler MJ, Freeden W, Michel V (2004) The Kaiserslautern multiscale geopotential model SWITCH-03 from orbit perturbations of the satellite CHAMP and its comparison to the models EGM96, UCPH2002_02_0.5, EIGEN-1s and EIGEN-2. Geophys J Int 157:499–514. https://doi.org/10.1111/j.1365-246X.2004.02209.x

    Article  Google Scholar 

  • Földváry L, Svehla D, Gerlach C, Wermuth M, Gruber T, Rummel R, Rothacher M, Frommknecht B, Peters T, Steigenberger P (2005) Gravity model TUM-2Sp based on the energy balance approach and kinematic CHAMP orbits. In: Earth observation with CHAMP, Results from three years in orbit. Springer, doi: https://doi.org/10.1007/3-540-26800-6_2

  • Gerlach C, Sneeuw N, Visser P, Svehla D (2003) CHAMP gravity field recovery using the energy balance approach. Adv Geosci 1: 73–80, ISSN 1680-7340, https://doi.org/10.5194/adgeo-1-73-2003

    Article  Google Scholar 

  • Gerlach C, Sneeuw N, Visser P, Svehla D (2003) CHAMP gravity field recovery with the energy balance approach: first results. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies, pp 134–139, https://doi.org/10.1007/978-3-540-38366-6_20

    Chapter  Google Scholar 

  • Hugentobler U (2012) The development of the IGS in 2011 the governing board’s perspective. IGS Technical Report 2011, pp 3–10, IGS Central Bureau, Jet Propulsion Laboratory

    Google Scholar 

  • Hugentobler U, Gruber T, Steigenberger P, Angermann D, Bouman J, Gerstl M, Richter B (2012) GGOS Bureau for Standards and Conventions: Integrated standards and conventions for geodesy. In: Kenyon SC, Pacino MC, Marti UJ (eds) Geodesy for planet earth, IAG symposia, vol 136, pp 995–998. Springer, https://doi.org/10.1007/978-3-642-20338-1_124

    Google Scholar 

  • Hwang C, Tseng TP, Lin T, Svehla D, Schreiner B (2009) Precise orbit determination for the FORMOSAT-3/COSMIC satellite mission using GPS. J Geodesy 83(5): 477–489. Springer, ISSN 0949-7714, https://doi.org/10.1007/s00190-008-0256-3

    Article  Google Scholar 

  • Hwang C, Tseng TP, Lin TJ, Svehla D, Hugentobler U, Chao B (2010) Quality assessment of FORMOSAT-3/COSMIC and GRACE GPS observables: analysis of multipath, ionospheric delay and phase residual in orbit determination. GPS Solutions 14(1):121–131. https://doi.org/10.1007/s10291-009-0145-0,2010

    Article  Google Scholar 

  • Jäggi A, Bock H, Prange L et al (2011) GPS-only gravity field recovery with GOCE, CHAMP, and GRACE. Adv Space Res 47:1020–1028. https://doi.org/10.1016/j.asr.2010.11.008

    Article  Google Scholar 

  • Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-earth orbiters. J Geodesy 80:47–60. https://doi.org/10.1007/s00190-006-0029-9

    Article  Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy: applications of satellites to geodesy. Blaisdell Publishing Company, Waltham, Massachusettss

    Google Scholar 

  • Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk K-H (2010) ITG-GRACE: global static and temporal gravity field models from GRACE data. In: Flechtner FM, Gruber T, Güntner A et al (eds) System earth via geodetic-geophysical space techniques. Springer, Heidelberg, pp 159–168

    Chapter  Google Scholar 

  • Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period. J Geodesy 78:462–480. https://doi.org/10.1007/s00190-004-0413-2

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. https://doi.org/10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Pail R, Goiginger H, Schuh WD, et al (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:1–5, L20314. https://doi.org/10.1029/2010gl044906

    Article  Google Scholar 

  • Ray J (2002) C1/P1 biases for Leica and Trimble 5700 receivers

    Google Scholar 

  • Reubelt T, Götzelmann M, Grafarend E (2006) Harmonic analysis of the earth’s gravitational field from kinematic CHAMP orbits based on numerically derived satellite accelerations. In: Observation of the earth system from space, pp 27–42

    Google Scholar 

  • Rothacher M, Schmid R, Steigenberger P, Svehla D, Thaller D (2004) Combination of the space-geodetic techniques for monitoring the Earth’s system. In: EOS Transactions AGU, Fall Meeting Supplement, Abstract G22A-01, vol 85, Nr 47, AGU

    Google Scholar 

  • Rummel R, Bosch W, Drewes H (2000) Towards an integrated global geodetic observing system (IGGOS). In: International association of geodesy symposia, vol 120. Springer, Heidelberg, https://doi.org/10.1007/978-3-642-59745-9

  • Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85:777–790. https://doi.org/10.1007/s00190-011-0500-0

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the earth’s ionosphere using Global Positioning System. Schweizerische Geodätische Kommission

    Google Scholar 

  • Schmidt M, Kusche J, Loon JP, et al (2005) Multiresolution representation of a regional geoid from satellite and terrestrial gravity data. In: Gravity, geoid and space missions, pp 167–172

    Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R et al (2006) Reprocessing of a global GPS network. J Geophys Res 111:B05402. https://doi.org/10.1029/2005JB003747

    Article  Google Scholar 

  • Sneeuw N, Gerlach C, Svehla D, Gruber C (2003) A first attempt at time variable gravity recovery from CHAMP using the energy balance approach. In: Gravity and geoid: proceedings of 3rd meeting of the international gravity and geoid commission, Thessaloniki, 2002. ZITI-Publishing, pp 237–242

    Google Scholar 

  • Sneeuw N, Gerlach C, Földváry L, Gruber T, Peters T, Rummel R, Svehla D (2005) One year of time-variable CHAMP-only gravity field models using kinematic orbits. In: Sansò F, (eds) A window on the future of geodesy, IAG Symposia, vol 128, pp 288–293, https://doi.org/10.1007/3-540-27432-4_49

  • Švehla D, Rothacher M (2002) Kinematic orbit determination of LEOs based on zero– or double–difference algorithms using simulated and real SST data. In: Vistas for geodesy in the new millenium. International association of geodesy symposia, vol 125. Springer, Heidelberg, pp 322–328, https://doi.org/10.1007/978-3-662-04709-5_53

    Google Scholar 

  • Švehla D, Rothacher M (2003a) CHAMP double–difference kinematic POD with ambiguity resolution. In: First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer-Verlag, Potsdam, pp 70–77, https://doi.org/10.1007/978-3-540-38366-6_11

    Chapter  Google Scholar 

  • Švehla D, Rothacher M (2003b) Kinematic and reduced-dynamic precise orbit determination of low Earth orbiters. Adv. Geosci. 1:47–56. https://doi.org/10.5194/adgeo-1-47-2003

    Article  Google Scholar 

  • Švehla D, Rothacher M (2004a) Two years of CHAMP kinematic orbits for geosciences. European geosciences union, 1st general assembly, 25–30 April 2004, Nice, France. Geophysical Research Abstracts, European Geophysical Society, vol 6. ISSN:1029–7006

    Google Scholar 

  • Švehla D, Rothacher M (2005a) Kinematic positioning of LEO and GPS satellites and IGS stations on the ground. Adv Space Res 36:376–381. https://doi.org/10.1016/j.asr.2005.04.066

    Article  Google Scholar 

  • Švehla D, Rothacher M (2005b) Kinematic precise orbit determination for gravity field determination. In: A window on the future of geodesy. International association of geodesy symposia, vol 128. Springer, Heidelberg, pp 181–188, https://doi.org/10.1007/3-540-27432-4_32

  • Teunissen PJG (2001) The probability distribution of the ambiguity bootstrapped GNSS baseline. J Geodesy 75:267–275. https://doi.org/10.1007/s001900100172

    Article  Google Scholar 

  • Tseng Tzu-Pang, Hwang Ch, Yang SK (2012) Assessing attitude error of FORMOSAT-3/COSMIC satellites and its impact on orbit determination. Adv Space Res 49(9):1301–1312. https://doi.org/10.1016/j.asr.2012.02.007

    Article  Google Scholar 

  • van den Ijssel J, Visser P, Patino Rodriguez E (2003) Champ precise orbit determination using GPS data. Adv Space Res 31:1889–1895. https://doi.org/10.1016/S0273-1177(03)00161-3

    Article  Google Scholar 

  • Visser P, van den Ijssel J, van Helleputte T, Bock H, Jäggi A, Beutler G, Svehla D, Hugentobler U, Heinze, M (2009) Orbit determination for the GOCE satellite. Adv Space Res 43(5): 760–768. Elsevier, ISSN 0273-1177, https://doi.org/10.1016/j.asr.2008.09.016

    Article  Google Scholar 

  • Visser P, van den Ijssel J, van Helleputte T, Bock H, Jäggi A, Beutler G, Hugentobler U, Svehla D (2007) Rapid and precise orbit determination for the GOCE satellite. In: proceedings of the 3rd international GOCE user workshop, ESA SP-627, pp 235–239, ISBN (Print) 92-9092-938-3, ISSN 1609-042X, 2007

    Google Scholar 

  • Wermuth M, Gerlach C, Svehla D, Földváry L (2004) Comparison of different gravity field solution methods applied to CHAMP gravity field modelling. In: Proceedings of the 1st international workshop on gravity field research, Österreichische Beiträge zu Meteorologie und Geophysik, Heft 31, pp 45–50, Zentralanstalt für Meteorologie und Geodynamik (ZAMG), ISSN 1016-6254

    Google Scholar 

  • Williams J, Lightsey EG, Yoon SP, Schutz BE (2002) Testing of the ICESat BlackJack GPS Receiver Engineering Model

    Google Scholar 

  • Yunck T, Bertiger W, Wu S et al (1994) First assessment of GPS-based reduced dynamic orbit determination on TOPEX/POSEIDON. Geophys Res Lett 21:541–544

    Article  Google Scholar 

  • Zehentner N, Mayer-Gürr T (2015) Mitigation of ionospheric scintillation effects in kinematic LEO precise orbit determination. In: Geophysical research abstracts, Vienna, EGU2015-10477–1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drazen Svehla .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Svehla, D. (2018). The First Geometric POD of LEO Satellites—A Piece of History. In: Geometrical Theory of Satellite Orbits and Gravity Field . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-76873-1_1

Download citation

Publish with us

Policies and ethics