Skip to main content

Promoting the Development of Renewable Energy Under Uncertainty

  • Chapter
  • First Online:
Feed-in Tariffs and the Economics of Renewable Energy
  • 545 Accesses

Abstract

Foreign direct investment in renewable energy projects, particularly where biomass is used as input, has been attracting increasing attention, partly due to the Clean Development Mechanism (CDM) of the Kyoto Protocol. In these situations, there may be an information gap between a host country’s government and the foreign firm that will invest: while the firm can collect information regarding the project, for example through a feasibility study, it will be difficult for the government to know whether the foreign firm is undertaking the project efficiently. It is supposed that the government will offer the foreign firm some remunerations, consisting of feed-in premiums (FIPs) and capital subsidies, to encourage investment in such a project. The purpose of this chapter is to determine an optimal combination of FIPs and capital subsidies that encourages investment in a CDM project by a foreign firm, while minimizing the cost of FIPs and capital subsidies. To this end, we develop a microeconomic model that accounts for this information gap. It is shown that a single combination of remunerations is determined to be optimal regardless of the existence of such an information gap. The model developed in this chapter may be considered an extension of the model developed in Chap. 5, this time applied to an investigation that accounts for uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Choi JP (2001) Technology transfer with moral hazard. Int J Ind Organ 19:249–266

    Article  Google Scholar 

  • Das SP (1999) Direct foreign investment versus licensing. Rev Dev Econ 3:86–97

    Article  Google Scholar 

  • Gallini NT, Wright BD (1990) Technology transfer under asymmetric information. Rand J Econ 21:147–160

    Article  Google Scholar 

  • Macho-Stadler I, Pérez-Castrillo D (2001) An introduction to the economics of information. Oxford University Press, Oxford

    Google Scholar 

  • Marjit S, Mukherjee A (2001) Technology transfer under asymmetric information: the role of equity participation. J Inst Theor Econ 157:282–300

    Article  Google Scholar 

  • UNFCCC (2017) CDM projects. http://cdm.unfccc.int. Accessed 30 Nov 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Yamamoto .

Appendix 1: The Solution to the Minimization Problem in the Case of Asymmetric Information

Appendix 1: The Solution to the Minimization Problem in the Case of Asymmetric Information

To begin, note that for a firm of type G, the participation constraint (8.28) may be eliminated because

$$ \begin{aligned}\Pi _{G} \left( {x_{G}^{*} \left( {p_{G} } \right)} \right) + s_{G} - F & \ge \pi_{G} \left( {x_{G}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F \\ & > \pi_{B} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F. \\ & \ge 0 \\ \end{aligned} $$
(8.33)

The first inequality in (8.33) follows from (8.26), and the third inequality follows from (8.29). The second inequality follows from \( C_{G}^{{\prime }} (x) < C_{B}^{{\prime }} (x),\,p + r = C_{G}^{{\prime }} \left( {x_{G}^{*} (p)} \right) \), and \( p + r = C_{B}^{{\prime }} \left( {x_{B}^{*} (p)} \right) \).

The Lagrangian \( \widetilde{L} \) is

$$\begin{aligned} \tilde{L} = & t\left( {p_{G} x_{G}^{*} \left( {p_{G} } \right) + s_{G} } \right) + (1 - t)\left( {p_{B} x_{B}^{*} \left( {p_{B} } \right) + s_{B} } \right) \\ & - \mu _{1} \left[ {\left( {\pi _{G} \left( {x_{G}^{*} \left( {p_{G} } \right)} \right) + s_{G} - F} \right) - \left( {\pi _{G} \left( {x_{G}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F} \right)} \right] \\ & - \mu _{2} \left[ {\left( {\pi _{B} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F} \right) - \left( {\pi _{B} \left( {x_{B}^{*} \left( {p_{G} } \right)} \right) + s_{G} - F} \right)} \right], \\ & - \mu _{3} \left[ {\pi _{B} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F} \right] \\ & - \mu _{4} p_{G} - \mu _{5} p_{B} - \mu _{6} s_{G} - \mu _{7} s_{B} \\ \end{aligned} $$
(8.34)

where \( \mu_{i} \,(i = 1, \ldots ,7) \) is a Lagrange multiplier.

Then, we write out the complete set of first order conditions:

$$ \frac{{\partial \widetilde{L}}}{{\partial p_{G} }} = tx_{G}^{*} \left( {p_{G} } \right) + \frac{{tp_{G} }}{{C_{G}^{{\prime \prime }} \left( {x_{G}^{*} \left( {p_{G} } \right)} \right)}} - \mu_{1} x_{G}^{*} \left( {p_{G} } \right) + \mu_{2} x_{B}^{*} \left( {p_{G} } \right) - \mu_{4} = 0, $$
(8.35)
$$ \begin{aligned} \frac{{\partial \tilde{L}}}{{\partial p_{B} }} = & (1 - t)x_{B}^{*} \left( {p_{B} } \right) + \frac{{(1 - t)p_{B} }}{{C_{B}^{{\prime \prime }} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right)}} + \mu _{1} x_{G}^{*} \left( {p_{B} } \right) \\ & - \mu _{2} x_{B}^{*} \left( {p_{B} } \right) - \mu _{3} x_{B}^{*} \left( {p_{B} } \right) - \mu _{5} = 0, \\ \end{aligned} $$
(8.36)
$$ \frac{{\partial \widetilde{L}}}{{\partial s_{G} }} = t - \mu_{1} + \mu_{2} - \mu_{6} = 0, $$
(8.37)
$$ \frac{{\partial \widetilde{L}}}{{\partial s_{B} }} = (1 - t) + \mu_{1} - \mu_{2} - \mu_{3} - \mu_{7} = 0, $$
(8.38)
$$ \mu_{1} \left[ {\left\{ {\pi_{G} \left( {x_{G}^{*} \left( {p_{G} } \right)} \right) + s_{G} - F} \right\} - \left\{ {\pi_{G} \left( {x_{G}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F} \right\}} \right] = 0, $$
(8.39)
$$ \mu_{2} \left[ {\left\{ {\pi_{B} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F} \right\} - \left\{ {\pi_{B} \left( {x_{B}^{*} \left( {p_{G} } \right)} \right) + s_{G} - F} \right\}} \right] = 0, $$
(8.40)
$$ \mu_{3} \left\{ {\pi_{B} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F} \right\} = 0, $$
(8.41)
$$ \mu_{4} p_{G} = 0, $$
(8.42)
$$ \mu_{5} p_{B} = 0, $$
(8.43)
$$ \mu_{6} s_{G} = 0, $$
(8.44)
$$ \mu_{7} s_{B} = 0, $$
(8.45)
$$ \left\{ {\pi_{G} \left( {x_{G}^{*} \left( {p_{G} } \right)} \right) + s_{G} - F} \right\} - \left\{ {\pi_{G} \left( {x_{G}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F} \right\} \ge 0, $$
(8.46)
$$ \left\{ {\pi_{B} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F} \right\} - \left\{ {\pi_{B} \left( {x_{B}^{*} \left( {p_{G} } \right)} \right) + s_{G} - F} \right\} \ge 0, $$
(8.47)
$$ \pi_{B} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right) + s_{B} - F \ge 0, $$
(8.48)
$$ p_{G} \ge 0,\,p_{B} \ge 0,\,s_{G} \ge 0,\,s_{B} \ge 0, $$
(8.49)
$$ {\text{and}}\,\mu_{1} ,\mu_{2} ,\mu_{3} ,\mu_{4} ,\mu_{5} ,\mu_{6} ,\mu_{7} \ge 0. $$
(8.50)

First, suppose \( \mu_{1} = 0 \). From Eq. (8.37), \( \mu_{6} = t + \mu_{2} > 0 \). Thus, \( s_{G} = 0 \) from Eq. (8.44). On the other hand, \( \mu_{4} > 0 \) from Eq. (8.35). Hence, \( p_{G} = 0 \) from Eq. (8.42). However, \( p_{G} = 0,\,s_{G} = 0 \) does not satisfy (8.33). Therefore, \( \mu_{1} > 0 \).

Next, we will show \( p_{G} = p_{B} \). If \( p_{G} < p_{B} ,\,p_{B} > 0 \) follows from (8.49). Thus, \( \mu_{5} = 0 \) from Eq. (8.43). Because \( \mu_{2} + \mu_{3} = (1 - t) + \mu_{1} - \mu_{7} \) from Eq. (8.38), the left hand side of Eq. (8.36) is

$$ \begin{aligned} \frac{{\partial \tilde{L}}}{{\partial p_{B} }} & = (1 - t)x_{B}^{*} \left( {p_{B} } \right) + \frac{{(1 - t)p_{B} }}{{C_{B}^{{\prime \prime }} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right)}} + \mu _{1} x_{G}^{*} \left( {p_{B} } \right) - \left[ {(1 - t) + \mu _{1} - \mu _{7} } \right]x_{B}^{*} \left( {p_{B} } \right) \\ & = \frac{{(1 - t)p_{B} }}{{C_{B}^{{\prime \prime }} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right)}} + \mu _{1} \left( {x_{G}^{*} \left( {p_{B} } \right) - x_{B}^{*} \left( {p_{B} } \right)} \right) + \mu _{7} x_{B}^{*} \left( {p_{B} } \right) \\ & > 0. \\ \end{aligned} $$
(8.51)

However, this contradicts Eq. (8.36). Hence, \( p_{G} \ge p_{B} \).

If \( p_{G} > p_{B} ,\,p_{G} > 0 \) follows from (8.49). Then, \( \mu_{4} = 0 \) from Eq. (8.42). Furthermore, \( \mu_{2} = 0 \): if \( \mu_{2} > 0 \),

$$ \pi_{B} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right) + s_{B} = \pi_{B} \left( {x_{B}^{*} \left( {p_{G} } \right)} \right) + s_{G} $$
(8.52)

holds from Eq. (8.40). On the other hand, because \( \mu_{1} > 0 \),

$$ \pi_{G} \left( {x_{G}^{*} \left( {p_{G} } \right)} \right) + s_{G} = \pi_{G} \left( {x_{G}^{*} \left( {p_{B} } \right)} \right) + s_{B} $$
(8.53)

holds from Eq. (8.39). Taken together, Eqs. (8.52) and (8.53) yield

$$ \pi_{G} \left( {x_{G}^{*} \left( {p_{G} } \right)} \right) - \pi_{B} \left( {x_{B}^{*} \left( {p_{G} } \right)} \right) = \pi_{G} \left( {x_{G}^{*} \left( {p_{B} } \right)} \right) - \pi_{B} \left( {x_{B}^{*} \left( {p_{B} } \right)} \right). $$
(8.54)

However, this is not the case: the left hand side must be larger than the right hand side because \( p_{B} > p_{B} \). Hence, \( \mu_{2} = 0 \).

Then, because \( \mu_{1} = t - \mu_{6} \) from Eq. (8.37), the left hand side of Eq. (8.35) is

$$\begin{aligned} \frac{{\partial \tilde{L}}}{{\partial p_{G} }} & = tx_{G}^{*} \left( {p_{G} } \right) + \frac{{tp_{G} }}{{C_{G}^{{\prime \prime }} \left( {x_{G}^{*} \left( {p_{G} } \right)} \right)}} - \left( {t - \mu _{6} } \right)x_{G}^{*} \left( {p_{G} } \right) \\ & = \mu _{6} x_{G}^{*} \left( {p_{G} } \right) + \frac{{tp_{G} }}{{C_{G}^{{\prime \prime }} \left( {x_{G}^{*} \left( {p_{G} } \right)} \right)}} \\ & > 0. \\ \end{aligned} $$
(8.55)

This contradicts Eq. (8.35). Hence, \( p_{G} = p_{B} \) holds. Accordingly, \( s_{G} = s_{B} \) follows from (8.53).

Therefore, the minimization problem is reduced to the following minimization problem with respect to p, s:

$$ {\text{minimize }}t\left( {px_{G}^{*} (p) + s} \right) + (1 - t)\left( {px_{B}^{*} (p) + s} \right), $$
(8.56)
$$ {\text{subject to}}\,\pi_{B} \left( {x_{B}^{*} (p)} \right) + s - F \ge 0, $$
(8.57)
$$ p \ge 0, $$
(8.58)
$$ {\text{and}}\,s \ge 0. $$
(8.59)

The Lagrangian \( \widehat{L} \) is

$$ \widehat{L} = t\left( {px_{G}^{*} (p) + s} \right) + (1 - t)\left( {px_{B}^{*} (p) + s} \right) - \xi_{1} \left[ {\pi_{B} \left( {x_{B}^{*} (p)} \right) + s - F} \right] - \xi_{2} p - \xi_{3} s, $$
(8.60)

where \( \xi_{1} ,\xi_{2} \), and \( \xi_{3} \) are Lagrange multipliers.

We now obtain the set of first-order conditions:

$$ \frac{{\partial \widehat{L}}}{\partial p} = tx_{G}^{*} (p) + \frac{tp}{{C_{G}^{{\prime \prime }} \left( {x_{G}^{*} (p)} \right)}} + (1 - t)x_{B}^{*} (p) + \frac{(1 - t)p}{{C_{B}^{{\prime \prime }} \left( {x_{B}^{*} (p)} \right)}} - \xi_{1} x_{B}^{*} (p) - \xi_{2} = 0, $$
(8.61)
$$ \frac{{\partial \widehat{L}}}{\partial s} = 1 - \xi_{1} - \xi_{3} = 0, $$
(8.62)
$$ \xi_{1} \left[ {\pi \left( {x_{B}^{*} (p)} \right) + s - F} \right] = 0, $$
(8.63)
$$ \xi_{2} p = 0, $$
(8.64)
$$ \xi_{3} s = 0, $$
(8.65)
$$ \pi \left( {x_{B}^{*} (p)} \right) + s - F \ge 0, $$
(8.66)
$$ p \ge 0,\,s \ge 0, $$
(8.67)
$$ {\text{and}}\,\xi_{1} ,\xi_{2} ,\xi_{3} \ge 0. $$
(8.68)

First, suppose \( \xi_{1} = 0 \). Then, \( \xi_{3} = 1 > 0 \) from Eq. (8.62). Hence, \( s = 0 \) from Eq. (8.65). Furthermore, \( \xi_{2} > 0 \) from Eq. (8.61). Thus, \( p = 0 \) from Eq. (8.64). However, \( p = 0,\,s = 0 \) does not satisfy (8.66) due to assumption (8.6). Therefore, \( \xi_{1} > 0 \) holds.

Accordingly, from Eq. (8.63),

$$ \pi \left( {x_{B}^{*} (p)} \right) + s - F = 0 $$
(8.69)

holds.

Next, suppose \( \xi_{2} = 0 \). Then, because \( \xi_{1} = 1 - \xi_{3} \) from Eq. (8.62), the left hand side of Eq. (8.61) is

$$ \begin{aligned} \frac{{\partial \hat{L}}}{{\partial p}} & = tx_{G}^{*} (p) + \frac{{tp}}{{C_{G}^{{\prime \prime }} \left( {x_{G}^{*} (p)} \right)}} + (1 - t)x_{B}^{*} (p) + \frac{{(1 - t)p}}{{C_{B}^{{\prime \prime }} \left( {x_{B}^{*} (p)} \right)}} - \left( {1 - \xi _{3} } \right)x_{B}^{*} (p) \\ & = t\left( {x_{G}^{*} (p) - x_{B}^{*} (p)} \right) + \xi _{3} x_{B}^{*} (p) + \frac{{tp}}{{C_{G}^{{\prime \prime }} \left( {x_{G}^{*} (p)} \right)}} + \frac{{(1 - t)p}}{{C_{B}^{{\prime \prime }} \left( {x_{B}^{*} (p)} \right)}} \\ & > 0. \\ \end{aligned}$$
(8.70)

This contradicts Eq. (8.61). Hence, \( \xi_{2} > 0 \).

Accordingly, \( p = 0 \) from Eq. (8.64). Then, Eq. (8.69) yields \( s = F - \pi \left( {x_{B}^{*} (0)} \right) \).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamamoto, Y. (2018). Promoting the Development of Renewable Energy Under Uncertainty. In: Feed-in Tariffs and the Economics of Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-76864-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76864-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76863-2

  • Online ISBN: 978-3-319-76864-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics