Skip to main content

Seismic Analysis and Design of Retaining Walls and Shallow Foundations

  • Chapter
  • First Online:
Advances in Indian Earthquake Engineering and Seismology

Abstract

This chapter presents a state-of-art review of two important problems in geotechnical earthquake engineering. Seismic analysis and design of (i) Retaining Walls and (ii) Shallow Foundations. Different methods available, their merits and demerits have been discussed critically. Finally recommendations have been made for the design of retaining walls and shallow foundations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Atik, L., & Sitar, N. (2010). Seismic earth pressures on cantilever retaining structures. Journal Geotechnical and Geoenviromental Engineering, 136(10), 1324–1333.

    Article  Google Scholar 

  • Al-Karni, A. A. (1993). Seismic settlement and bearing capacity of shallow footings on cohesionless soil. Ph.D. thesis, University of Arizona, USA.

    Google Scholar 

  • Budhu, M., & Al-Karni, A. A. (1993). Seismic bearing capacity of soils. Géotechnique, 43(1), 181–187.

    Article  Google Scholar 

  • Choudhury, D., & Rao, K. S. S. (2005). Seismic bearing capacity of shallow strip footings. Geotechnical and Geological Engineering, 23(4), 403–418.

    Article  Google Scholar 

  • Clough, G. W. & Fragaszy, R. F. (1977). A study of earth loadings on floodway retaining structures in the 1971 San Fernando Valley earthquake. Proceedings of the 6th WCEE, Sarita Prakashan, Meerut, India (Vol. 3).

    Google Scholar 

  • Coulomb, C. A. (1776). Essai sur une Application des Regles des maximis et minimis a quelques Problemes de statique Relatifs a l’Architecture, Académie Royale des Sciences par divers Savans (Vol. 7). Paris: De l'Imprimerie Royale.

    Google Scholar 

  • Culmann, K. (1866). Die graphische statik. Zurich: Mayr and Zeller.

    Google Scholar 

  • Das, B. M., & Puri, V. K. (1996). Static and dynamic active earth pressure. Geotechnical and Geological Engineering, 14(4), 353–366.

    Article  Google Scholar 

  • Das, B. M., & Ramana, G. V. (2010). Principles of soil dynamics (2nd ed.). Stanford: Cengage Learning.

    Google Scholar 

  • Davies, T. G., Richards, R., & Chen, K. H. (1986). Passive pressure during seismic loading. Journal of Geotechnical Engineering, ASCE, 112(GT4), 479–484.

    Article  Google Scholar 

  • Dormieux, L., & Pecker, A. (1995). Seismic bearing capacity of foundation on cohesionless soil. Journal of Geotechnical Engineering, 121(3), 300–303.

    Article  Google Scholar 

  • Ebelling, R. M. & Morrison E. E. (1992). The seismic design of waterfront retaining structures. US Army Technical Report ITL-92-11 and US Navy Technical Report NCEL TR-939.

    Google Scholar 

  • Franklind, A.G., & Chang, F.K. (1977). Permanent displacements of earth embankments by Newmark sliding block analysis. US Army Waterways Experiment Station, Misc. Paper S-71-17.

    Google Scholar 

  • Gazetas, G., Psarropoulos, P. N., Anastasopoulos, I., & Gerolymos, N. (2004). Seismic behavior of flexible retaining systems subjected to short-duration moderately strong excitation. Soil Dynamics and Earthquake Engineering, 24, 537–550.

    Article  Google Scholar 

  • Ghosh, P. (2008). Upper bound solutions of bearing capacity of strip footing by pseudo-dynamic approach. Acta Geotechnica, 3(2), 115–123.

    Article  Google Scholar 

  • Ghosh, P., & Choudhury, D. (2011). Seismic bearing capacity factors for shallow strip footings by pseudo-dynamic approach. Disaster Advances, 4(3), 34–42.

    Google Scholar 

  • IS 1893-Part-III. (2012). Criteria for earthquake resistant design of structures – part 3 bridges and retaining walls. New Delhi: Bureau of Indian Standards.

    Google Scholar 

  • Kapila, I. P. (1962). Earthquake resisting design of Retaining walls. Proceedings of the 2nd Symposium in Earthquake Engineering, University of Roorkee, Roorkee.

    Google Scholar 

  • Lai, C. S. (1979). Behaviour of retaining walls under seismic loading. New Zealand: M.E. Report, University of Canterbury.

    Google Scholar 

  • Lambe, T. W., & Whitman, R. V. (2008). Soil mechanics SI version. New Delhi: Wiley India Pvt. Limited.

    Google Scholar 

  • Mononobe, N., & Matsuo, H. (1929). On the determination of earth pressure during earthquake. Proceedings of the World Engineering Congress, Tokyo, Japan, 177–185.

    Google Scholar 

  • Mononobe, N., & Matsuo, H. (1932). Experimental investigation of lateral earth pressure during earthquakes. Earthquake Research Institute and Research Office of Public Works, 884–902.

    Google Scholar 

  • Nadim, F., & Whitman, R. V. (1983). Seismically induced movement of retaining walls. Journal of Geotechnical Engineering, 109(7), 915–931.

    Article  Google Scholar 

  • Nandakumaran, P. (1973). Behaviour of retaining walls under dynamic loads. Ph.D. thesis, University of Roorkee, Roorkee, India.

    Google Scholar 

  • Newmark, N. (1965). Effects of earthquakes on dams and embankments. Geotechnique, 15(2), 139–160.

    Article  Google Scholar 

  • Okabe, S. (1924). General theory on earth pressure and seismic stability of retaining wall and dam. Journal of the Japanese Society of Civil Engineering, 10(6), 1277–1323.

    Google Scholar 

  • Prakash, S., Puri, V. K., & Khandoker, J. U. (1981). Rocking displacements of retaining walls during earthquake. International Conference on Recent Advances in Geotechanical Earthquake Engineering and Soil Dynamics, St. Louis, U.S.A. (Vol. III, 1021–1025).

    Google Scholar 

  • Prakash, S., & Saran, S. (1966). Static and dynamic earth pressures behind retaining walls. Proceedings of the 3rd symposium on earthquake engineering, Roorkee, I, 277–288.

    Google Scholar 

  • Prandtl, L. (1921). Ãœber die Eindringung festigkeit (Härte) plastischer Baustoffe und die Festigkeitvon Schneiden (in German). ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1(1), 15–20.

    Google Scholar 

  • Reddy, R. K., Saran, S., & Viladkar, M. N. (1985). Prediction of displacements of retaining walls under dynamic conditions. Bulletin of Indian Society Earthquake Technology., Paper No. 239, 22(3), 101–115.

    Google Scholar 

  • Richards, R., Jr., & Elms, D. G. (1979). Seismic behavior of gravity retaining walls. Journal of Geotechnical Engineering, ASCE, 105(GT4), 449–464.

    Google Scholar 

  • Richards, R., Elms, D. G., & Budhu, M. (1993). Seismic bearing capacity and settlements of foundations. Journal of Geotechnical Engineering, 119(4), 662–674.

    Article  Google Scholar 

  • Richards, R., & Shi, X. (1994). Seismic lateral pressures in soils with cohesion. Journal of Geotechnical and Geoenvironmental Engineering, 120(7), 1230–1251.

    Article  Google Scholar 

  • Saran, S., & Gupta, R. P. (2003). Seismic earth pressure behind retaining walls. Indian Geotechnical Journal, 33(3), 195–213.

    Google Scholar 

  • Saran, S., & Prakash, A. (1971). Seismic pressure distribution in earth retaining walls. Proceedings of the Third European Symposium on Earthquake Engineering, Bulgaria Academy of Science, Bulgaria , 355–362.

    Google Scholar 

  • Saran, S., & Prakash, S. (1968). Dimensionless parameters for static and dynamic earth pressures behind retaining walls. Journal, Indian National Society of Soil Mechanics and Foundation Engineering, 7, 295–310.

    Google Scholar 

  • Saran, S., & Rangwala, H. M. (2012). Seismic earth pressure in yielding walls gravity retaining partially submerged cohesionless backfill. International Journal of Geotechnical Engineering, 6(3), 309–318. Accepted for publication in July Issue.

    Article  Google Scholar 

  • Saran, S. K., & Rangwala, H. (2011). Seismic bearing capacity of footings. International Journal of Geotechnical Engineering, 5(4), 475–483.

    Google Scholar 

  • Sarma, S. K. (1975). Seismic stability of earth dams and embankments. Geotechnique, 25(4), 743–761.

    Article  Google Scholar 

  • Sarma, S. K., & Iossifelis, I. S. (1990). Seismic bearing capacity factors of shallow strip footings. Géotechnique, 40, 265–273.

    Article  Google Scholar 

  • Seed, H. B., & Whitman, R. V. (1970). Design of earth retaining structures of dynamic loads. Proceedings of the Speciality Conference on Lateral Stresses in the Ground and Design of Earth Retaining Structures, ASCE, 103–147.

    Google Scholar 

  • Shukla, S. K., Gupta, S. K., & Sivakugan, N. (2009). Active earth pressure on retaining wall for c-Ï• soil backfill under seismic loading condition. Journal of Geotechnical and Geoenvironmental Engineering, 135(5), 690–696.

    Article  Google Scholar 

  • Shukla, S. K., & Habibi, D. (2011). Dynamic passive pressure from c-Ï• soil backfills. Soil Dynamics and Earthquake Engineering, 31(5–6), 845–848.

    Article  Google Scholar 

  • Shukla, S. K., Nagaratnam, S., & Das, B. M. (2011). Analytical expression for dynamic passive pressure from c–ϕ soil backfill with surcharge. International Journal of Geotechnical Engineering, 5(3), 357–362.

    Article  Google Scholar 

  • Shukla, S. K., & Zahid, M. (2011). Analytical expression for dynamic active earth pressure from c-Ï• soil backfill with surcharge. International Journal of Geotechnical Engineering, 5(2), 143–150.

    Article  Google Scholar 

  • Soubra, A. H. (1999). Upper-bound solutions for bearing capacity of foundations. Journal of Geotechnical and Geoenvironmental Engineering, 125(1), 59.

    Article  Google Scholar 

  • Steedman, R. S., & Zeng, X. (1990). The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Géotechnique, 40(1), 103–112.

    Article  Google Scholar 

  • Zarrabi, K. (1979). Sliding of gravity retaining wall during earthquakes considering vertical acceleration and changing inclination of failure surface. M.S. thesis, MIT, USA.

    Google Scholar 

  • Richards, R. Jr. and Elms, D.G. (1979). Seismic behavior of gravity retaining walls. Journal of Geotechnical Engineering, ASCE, 105(GT4), 449–464.

    Google Scholar 

  • Saran, S. (2012). Analysis and design of foundations and retaining structures subjected to seismic loads. I K International Publishing House Pvt. Ltd, New Delhi.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swami Saran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saran, S., Rangwala, H., Mukerjee, S. (2018). Seismic Analysis and Design of Retaining Walls and Shallow Foundations. In: Sharma, M., Shrikhande, M., Wason, H. (eds) Advances in Indian Earthquake Engineering and Seismology. Springer, Cham. https://doi.org/10.1007/978-3-319-76855-7_7

Download citation

Publish with us

Policies and ethics