Advertisement

Soils of the Pampean Region

  • Gerardo RubioEmail author
  • Fernando X. Pereyra
  • Miguel A. Taboada
Chapter
Part of the World Soils Book Series book series (WSBS)

Abstract

Pampean landscapes are characterized by the presence of extensive plains originally covered by grasslands. At present, rainfed production of cereal and oil crops is the main economic farming activity of the region and constitutes a high proportion of Argentina exports. The most fertile soils of Argentina are located in this region. They are Mollisols (mainly Argiudolls and Hapludolls), the most important and widespread soil order in the region. Argiudolls are usually very deep and show a complex profile, with highly differentiated horizons. Hapludolls have simpler profiles with surface layers occupied by coarser deposits. Local Mollisols were developed from loessic materials of predominantly silty granulometry, with some involvement of sand, leading to very favourable natural soil physical conditions for crop growth. Other conspicuous soil orders are Entisols and Alfisols. In this chapter, soil genesis and major soil types are described and four subregions were considered: Northern, Western, Southern and Flooding Pampa.

Keywords

Mollisols Entisols Alfisols Agricultural soils 

References

  1. Alvarez CR, Taboada MA, Gutiérrez Boem FH, Bono A, Fernández PL, Prystupa P (2009) Topsoil properties as affected by tillage systems in the rolling Pampa region of Argentina. Soil Sci Soc Am J 73:1242–1250CrossRefGoogle Scholar
  2. Amiotti N, Blanco MC (ex aecquo), Schmidt E, Díaz S (2010) Capítulo III Variabilidad espacial de los suelos y su relación con el paisaje. In: Ambientes y Recursos Naturales del Partido de Bahía Blanca: Clima, Geomorfología, Suelos y Aguas (Sudoeste de la provincia de Buenos Aires). J.D. Paoloni Compilador. 1ª Edición Bahía Blanca, Universidad Nacional del Sur, Ed. UNS p 128–173; 240p (ISBN 978-987-1648-22-1)Google Scholar
  3. Amiotti NM, Villamil MB, Darmody RG (2012) Agronomic and taxonomic consequences of agricultural use of marginal soils in Argentina. Soil Sci Soc Am J 76:558–568CrossRefGoogle Scholar
  4. Amiotti N, Blanco MC, Bouza M, Bravo O, De Lucía M, Echeverría N, Grill S, Kiessling R, Schmidt E, Zalba P (2014) Libro de la Gira Edafológica. XXIV Congreso Argentino de la Ciencia del Suelo. Ed. Asociación Argentina de la Ciencia del Suelo con el auspicio de ACES—Universidad de Illinois. 44pGoogle Scholar
  5. Barros VRA, Boninsegna JAB, Camilloni IAA, Chidiak MC, Magrín GOD, Rusticucci ME (2015) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdisciplinary Reviews: Climate Change Climate 6(2):151–169Google Scholar
  6. Berhongaray G, Alvarez R, De Paepe J, Caride C, Cantet R (2013) Land use effects on soil carbon in the Argentine Pampas. Geoderma 192:97–110CrossRefGoogle Scholar
  7. Blanco M, Sánchez L (1994) Mineralogía de arenas en suelos loéssicos del sudoeste pampeano. Turrialba 4(3):147–159Google Scholar
  8. Blanco MC, Stoops G (2007) Genesis of pedons with discontinuous argillic horizons in the Holocene loess mantle of the southern Pampean landscape, Argentina. J S Am Earth Sci 23(1):30–45CrossRefGoogle Scholar
  9. Buschiazzo DE (1988) Estudio sobre la tosca. Parte II: evidencias de un movimiento descendente del carbonato, características micromorfológicas. Ciencia del suelo 6Google Scholar
  10. Carol E, Kruse E, Pousa J (2008) Environmental hydrogeology of the southern sector of the Samborombon Bay wetland, Argentina. Environ Geol 54:95–102CrossRefGoogle Scholar
  11. Carol E, Kruse E, Mas-Pla J (2009) Hydrochemical andisotopical evidence of ground water salinization processes on the coastal plain of Samborombon Bay, Argentina. J Hydrol 365:335–345CrossRefGoogle Scholar
  12. Casas R, Albarracín MG (eds) (2015) El deterioro del suelo y del ambiente en la Argentina. Tomo II. Editorial FECIC 450 pGoogle Scholar
  13. Ciampitti IA, Piccone LI, Garcia FO, Rubio G (2011) Phosphorus budget and soil extractable dynamics in field crop rotations in Mollisols. Soil Sci Soc Am J 75:131–142CrossRefGoogle Scholar
  14. Damiano F, Taboada MA (2000) Predicción del agua disponible usando funciones de pedo-transferencia en suelos agrícolas de la región pampeana. Ciencia del Suelo 18:77–88Google Scholar
  15. De la Rosa D, Sobral R (2008) Soil quality and methods for its assessment, Chapter 9. In: Braimoh AK, Vlek PLG (eds) Land use and soil resources. Springer, Berlin, pp 167–200CrossRefGoogle Scholar
  16. Fidalgo F, Riggi J, Gentile R, Correa H, Porro N (1991) Los Sedimentos Pospampeanos continentales en el ámbito sur bonaerense. Rev Asoc Geol Argent XLVI 3–4:239–256Google Scholar
  17. Frenguelli J (1955) Loess y limos pampeanos. Univ Nac de la Plata, Fac de Cs Nat y Museo, Serie Técnica y Didáctica Nº 7. La PlataGoogle Scholar
  18. García FO, San Juan MFG (2013) La nutrición de suelos y cultivos y el balance de nutrientes: ¿Como estamos? Inf Agron Hisp 9:2–7Google Scholar
  19. Gonzalez Bonorino F (1966) Soil clay mineralogy of the Pampa plains Argentina. J Sed Petrol 36(4):1026–1035Google Scholar
  20. Hall AJ, Rebella CM, Ghersa CM, Culot JP (1992) Field-crop systems of the Pampas. In: Pearson CJ (ed) Field Crop Ecosystems. Elsevier, Amsterdam, London, New York, Tokyo, pp 413–450Google Scholar
  21. Hurtado MA, Gimenez JE (1988) Entisoles de la Region Pampeana. Genesis, clasificación, cartografia y mineralogía. In: Actas 2das Jornadas de Suelos de la Región Pampeana, La Plata, pp 97–137Google Scholar
  22. Imbellone P, Teruggi ME (1986) Morfología y micromorfología de toscas en paleosuelos de los alrededores de la Plata. Ciencia del Suelo 4:209–215Google Scholar
  23. Imbellone PA, Gimenez JE, Panigatti JL (2010) Suelos de la región pampeana. Procesos de formación. INTA 288pGoogle Scholar
  24. INTA (2017) Suelos de la República Argentina. Suelos de Buenos Aires 1:50000 y Suelos de la Pcia. de Santa Fe. Available at: http://geointa.inta.gov.ar/visor/
  25. Irigoin J, Paladino IR, Civeira G, Costa MC (2016) Physical and chemical variables analysis for clustering of soils in the longitudinal dunes of Sandy Pampa, Argentina. Environ Earth Sci 75:1196CrossRefGoogle Scholar
  26. Iriondo M (1990) The upper Holocene dry in Argentine plains. Quaternary of South America N° 7. AA Balkema, RotterdamGoogle Scholar
  27. Iriondo MH (1997) Models of deposition of loess and loessoids in the Upper Quaternary of South America. J S Am Earth Sci 10(1):71–79CrossRefGoogle Scholar
  28. Iriondo MH, Kröhling DM (2007) Non-classical types of loess. Sed Geol 202(3):352–368CrossRefGoogle Scholar
  29. Kemp RA, Zárate M, Toms P, King M, Sanabria J, Arguello G (2006) Late Quaternary paleosols, stratigraphy and landscape evolution in the Northern Pampa, Argentina. Quat Res 66(1):119–132CrossRefGoogle Scholar
  30. Kröhling DM, Orfeo O (2002) Sedimentología de unidades loéssicas (Pleistoceno tardío-Holoceno) del centro-sur de Santa Fe. AAS Revista, La Plata 9(2):135–154Google Scholar
  31. Lavado R, Taboada MA (1988) Water, salt and sodium dynamics in a Natraquoll in Argentina. CATENA 15:577–594CrossRefGoogle Scholar
  32. Lavado RS, Segat AML (1989) Effects of surface water flow damming on hydromorphism and halomorphism of an Argentine Natraquoll. Wetlands 9:317–325CrossRefGoogle Scholar
  33. Liu X, Burras CL, Kravchenko YS, Duran A, Huffman T, Morras H, Studdert G, Zhang X, Cruse RM, Yuan X (2012) Overview of Mollisols in the world: distribution, land use and management. Can J Soil Sci 92:383–402CrossRefGoogle Scholar
  34. Morrás H (2003) Distribución y origen de sedimentos superficiales de la Pampa Norte en base a la mineralogía de arenas, Resultados preliminares. Rev Asoc Argent Sedimentol 10(1):53–64Google Scholar
  35. Morrás H, Moretti L (2016) A new geopedologic approach on the genesis and distribution of Typic and Vertic Argiudolls in the Rolling Pampa of Argentina. In: Zinck A, Metternicht G, Bocco G, Valle H (eds) Geopedology Book. Springer, Berlin, pp 193–209CrossRefGoogle Scholar
  36. Novelli L, Caviglia O, Melchiori R (2011) Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma 167:254–260CrossRefGoogle Scholar
  37. Otondo J, Jacobo EJ, Taboada MA (2015) Mejora de propiedades físicas por el uso de especies megatérmicas en un suelo sódico templado. Ciencia del Suelo 33:119–130Google Scholar
  38. Paruelo JM, Guerschman JP, Verón SR (2005) Expansión agrícola y cambios en el uso del suelo. Revista Ciencia Hoy 15(87):14–23Google Scholar
  39. Paruelo JM, Jobbággy EG, Sala OE (2001) Current distribution of ecosystem functional types in temperate South America. Ecosystems 4:683–698CrossRefGoogle Scholar
  40. Pazos MS, Mestelan SA (2002) Variability of depthtotosca in Udolls and soil classification, Buenos Aires Province, Argentina. Soil Sci Soc Am J 66:1256–1264CrossRefGoogle Scholar
  41. Pereyra F (2012) Suelos de la Argentina. SEGEMAR-AACS-GAEA, Buenos AiresGoogle Scholar
  42. Rubio G, Taboada MA (2013) Arbol de decisión para diagnosticar la capacidad productiva de suelos de la región pampeana. Ciencia del Suelo 31:235–243Google Scholar
  43. Sadras V, Calviño PA (2001) Quantification of grain yield response to soil depth in soybean, maize sunflower and wheat. Agronomy J93:577–583CrossRefGoogle Scholar
  44. SAGyP-INTA (1989) Mapa de suelos de la Provincia de Buenos Aires. Proyecto PNUD/ARG/85/019. ISNB 950-9853-17-8Google Scholar
  45. Sainz Rozas H, Echeverría HE, Angelini H (2012) Fósforo disponible en suelos agrícolas de la región Pampeana y Extra Pampeana argentina. Revista de investigaciones agropecuarias 38:33–39Google Scholar
  46. Soriano A (1991) Río de la Plata Grasslands. In: Coupland RT (ed) Natural grasslands. Introduction and Western Hemisphere. Elsevier, Amsterdam, NL, pp 367–407Google Scholar
  47. Stofella S, Posse G, Collantes M (1998) Variabilidad fenotípica y genotítica de poblaciones de Lotus tenuis que habitan suelos con distinto pH. Ecología Austral 8:57–63Google Scholar
  48. Taboada MA, Rubio G, Lavado RS (1998) The deterioration of tall wheatgrass pastures on saline sodic soils. J Range Manage 51:239–244CrossRefGoogle Scholar
  49. Teruggi ME (1957) The nature and origin of Argentine loess. J Sediment Petrol 27:322–332Google Scholar
  50. Tricart JF (1973) Geomorfología de la Pampa Deprimida. INTA, Buenos AiresGoogle Scholar
  51. Varela MF, Barraco M, Gili A, Taboada MA, Rubio G (2016) Biomass decomposition and phosphorus release from residues of cover crops under no-tillage. Accepted in Agronomy JournalGoogle Scholar
  52. Viglizzo E, Frank F (2010) Erosión del suelo y contaminación del ambiente. In: Viglizzo EF, Jobbagy E (eds) Expansión de la Frontera Agropecuaria en Argentina y su Impacto Ecológico Ambiental. INTA, Buenos Aires, pp 37–41Google Scholar
  53. Viglizzo EF, Carreño LV, Pereyra H, Ricard F, Clatt J, Pincén D (2010) Dinámica de la frontera agropecuaria y cambio tecnológico. In: Viglizzo EF, Jobbagy E (eds) Expansión de la Frontera Agropecuaria en Argentina y su Impacto Ecológico Ambiental. INTA, Buenos Aires, pp 9–16Google Scholar
  54. Zárate M, Folguera A (2009) On the formations of the Pampas in the footsteps of Darwin: South of the Salado. Revista de la Asociación Geológica Argentina 64(1):124–136Google Scholar
  55. Zárate MA (2003) Loess of Southern South America. Quat Sci Rev 22:1987–2006CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Gerardo Rubio
    • 1
    Email author
  • Fernando X. Pereyra
    • 2
  • Miguel A. Taboada
    • 3
  1. 1.INBA (CONICET UBA), Cát. Fertilidad y Fertilizantes, Facultad AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.SEGEMARBuenos AiresArgentina
  3. 3.INTA, Instituto de SuelosBuenos AiresArgentina

Personalised recommendations