Advertisement

Contaminants

  • Raul S. LavadoEmail author
  • Virginia Aparicio
Chapter
  • 256 Downloads
Part of the World Soils Book Series book series (WSBS)

Abstract

This chapter focuses on the Pampas region, which is by far the most studied area in the country. The Pampas region shows a dual panorama about agricultural inputs: an historic deficit in nutrient balances coexists with a large utilization of pesticides. In this region, mining and oil extraction are almost inexistent and wastes and sewage are scarcely recycled in croplands. As a result soils show very low content of heavy metals. Only some small and isolated cases of soil contamination has been observed in field crops lands, most of them related to salinization in supplementary irrigated areas. In the last years, the increasing use of agrochemicals, especially herbicides, has opened up a new aspect to the problem of the soil contamination. This aspect is relatively new, and research is needed to know the persistence and effect of such pesticides in soils. In contrast to field crop soils, an important contamination degree is found in urban and peri-urban soils. Out of the region, oil spills in oil extraction areas or heavy metals from mining could be found.  

Keywords

Heavy metals Pesticides Salinization Mining 

References

  1. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemestry, bioavailability, and risks of heavy metals, 2nd edn. Springer, New York, p 867CrossRefGoogle Scholar
  2. Agostini MG, Kacoliris F, Demetrio P, Natale GS, Bonetto C, Ronco AE (2013) Abnormalities in amphibian populations inhabiting agroecosystems in northeastern Buenos Aires Province, Argentina. Dis Aquat Org 104:163–171CrossRefGoogle Scholar
  3. Andrade ML, Reyzabal ML, Marcet P, Montero MJ (2002) Industrial impact on marsh soils at the Bahia Blanca Ria, Argentina. J Environ Qual 31:532–538CrossRefGoogle Scholar
  4. Angelini J, Silvina G, Taurian T, Ibáñez F, Tonelli ML, Valetti L, Anzuay MS, Ludueña L, Muñoz V, Fabra A (2013) The effects of pesticides on bacterial nitrogen fixers in peanut-growing area. Arch Microbiol 195:683–692CrossRefGoogle Scholar
  5. Aparicio VC, Aimar S, De Gerónimo E, Buschiazzo D, Costa JL (2014) Glyphosate and AMPA content in soil particles displaced by wind erosion in Argentina. European Geociences Union, ViennaGoogle Scholar
  6. Aparicio V, De Gerónimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93:1866–1873CrossRefGoogle Scholar
  7. Arias AH, Vazquez-Botello A, Diaz G, Marcovecchio JH (2013) Accumulation of polychlorinated biphenyls (PCBs) in navigation channels, harbors and industrial areas of the Bahia Blanca Estuary, Argentina. Int J Environ Res 7:925–936Google Scholar
  8. Bedmar F, Costa JL, Suero E, Gimenez D (2004) Transport of Atrazine and Metribuzin in three soils of the Humid Pampas of Argentina. Weed Technol 18:1–8CrossRefGoogle Scholar
  9. Bedmar F, Daniel PE, Costa JL, Gimenez D (2011) Sorption of acetochlor, s-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina. Environ Toxicol Chem 30:1990–1996CrossRefGoogle Scholar
  10. Berrow ML, Reaves A (1984) Background levels of trace elements in soils. International conference on environmental contamination. England Edinburgh, UK, CEP Consultants Ltd, London, pp 333–340Google Scholar
  11. Bórtoli PV, Verdenelli RA, Conforto C, Vargas Gil S, Meriles JM (2012) Efectos del herbicida glifosato sobre la estructura y funcionamiento de comunidades microbianas de dos suelos de plantaciones de olivo. Ecología Austral 22:33–42Google Scholar
  12. Buffa EV, Rotto SE (2009) Contenido pseudototal de cobre, cinc, hierro y manganeso como estimador del fondo geoquímico en suelos de la llanura chaco-pampeana de Córdoba, Argentina. Ciencia del Suelo 27:185–198Google Scholar
  13. Camilión M, Hurtado M, Roca A, Da Silva M (1995) Niveles de Cu, Pb y Zn en Molisoles, Alfisoles y Vertisoles platenses, Provincia de Buenos Aires, Argentina. In: Actas del XIII Congreso Latinoamericano de Ciencia del Suelo, Aguas de Lindoia, Brazil, pp 9–16Google Scholar
  14. Carriquiriborde P, Díaz J, Mugni H, Bonetto C, Ronco AE (2007) Impact of cypermethrin on stream fish populations under field-use in biotech-soybean production. Chemosphere 68:613–621CrossRefGoogle Scholar
  15. Comerford N (2003) Soil: largest reactor on the planet? https://soilsmatter.wordpress.com/2013/12/02/soillargest-reactor-on-the-planet/
  16. Daniel PE, Bedmar F, Costa JL, Aparicio VC (2002) Atrazine and metribuzin sorption in soils of the Argentinean Humid Pampa. Environ Toxicol Chem 21:2567–2572CrossRefGoogle Scholar
  17. Di Nanno MP, Curutchet G, Ratto SE (2009) Transformaciones del S, Zn, Cr, Cu y FE en sedimentos fluviales durante el proceso de secado. Ciencia del Suelo 27:199–207Google Scholar
  18. Dudka S (1993) Baseline concentrations of As Co, Cr, Cu, Ga, Mn, Ni y Se, in surface soils. Pol Appl Geochem 2:23–28CrossRefGoogle Scholar
  19. Dudka S, Miller WP (1999) Permissible concentration of arsenic and lead in soils based on risk assessment. Water Air Soil Pollut 113:127–132CrossRefGoogle Scholar
  20. FAOSTAT (2015) Food and agriculture organization of the United Nacions Statistics Division. http://faostat3.fao.org/home/E. Consultado noviembre 2015
  21. Ferreyra H, Ferreyroa G, Molina FV, Caselli A, Barberis I, Beldoménico P, Uhart M, Romano M (2016) Lead pollution from waterfowl hunting in wetlands and rice fields in Argentina. Sci Total Environ 545–546:104–113Google Scholar
  22. Frink CR (1996) A perspective on metals in soils. J Soil Contam 5:329–359CrossRefGoogle Scholar
  23. Frioni L (1981) Efecto de atrazina, linurón y 2,4-D amina sobre algunas propiedades biológicas de un suelo. II Ensayo de laboratorio. Rev Argentina Microbiología 13:9–16Google Scholar
  24. Gianelli VR, Bedmar F, Costa JL (2014) Persistence and sorption of imazapyr in three Argentinean soils. Environ Toxicol Chem 33:29–34CrossRefGoogle Scholar
  25. Gianelli VR, Zelaya M, Bedmar F, Costa JL (2013) Determinación de residuos de imazapir en suelos de Argentina mediante cromatografía líquida de alta resolución y espectrometría de masas. Rev internacional contaminación ambiental 29:177–187Google Scholar
  26. Giuffré LP, Ratto C, Marbán L, Schonwald J, Romaniuk R (2005) Riesgo por metales pesados en horticultura urbana. Ciencia del Suelo 23:101–106Google Scholar
  27. Hang S, Andriulo A, Sasal C, Nassetta MM, Portela S, Cañas AI (2010) Integral study of atrazine behavior in field lysimeters in argentinean humid pampas soils. Chil J Agric Res 70:104–112CrossRefGoogle Scholar
  28. Jofré E, Mori G, Castro S, Fabra A, Rivarola V, Balegno H (1995) 2,4-Dichlorophenoxyacetic acid affects the attachment of Azospirillum brasilense Cd to maize roots. Toxicology 107:9–15CrossRefGoogle Scholar
  29. Lavado RS (2006) Concentration of potentially toxic elements in field crops grown near or far from cities of the Pampas (Argentina). J Environ Manage 80:116–119CrossRefGoogle Scholar
  30. Lavado RS (2014) Interacción entre cambio de uso del suelo, el clima y los procesos de salinización. In: Pascale Medina C, Zubillaga MM, Taboada MA (eds), Suelos, producción agropecuaria y cambio climático: avances en la Argentina. AAPA- AACS-MinAGP, pp 400–410Google Scholar
  31. Lavado RS, Porcelli CA (2000) Contents and main fractions of trace elements in Typic Argiudolls of the Argentinean Pampas. Chem Speciat Bioavailab 12:67–70CrossRefGoogle Scholar
  32. Lavado RS, Porcelli CA, Alvarez R (1999) Concentration and distribution of extractable elements in a soil as affected by tillage and fertilization. Sci Total Environ 232:185–191CrossRefGoogle Scholar
  33. Lavado RS, Rodriguez MB, Scheiner JD, Taboada MA, Rubio G, Alvarez R, Alconada M, Zubillaga MS (1998) Heavy metals in soils of Argentina: comparison between urban and agricultural soils. Commun Soil Sci Plant Anal 29:1913–1917CrossRefGoogle Scholar
  34. Lavado RS, Taboada MA (2009) The argentinean pampas: a key region with a negative nutrient balance and soil degradation needs better nutrient management and conservation programs to sustain its future viability as a world agroresource. J Soil Water Conserv 64:150A–153ACrossRefGoogle Scholar
  35. Lavado RS, Zubillaga MS, Alvarez R, Taboada MA (2004) Baseline levels of potentially toxic elements in pampas soils. Soil Sed Contam: Int J 13:329–339CrossRefGoogle Scholar
  36. Llosa R, Noriega G, Negro de Aguirre E, Kesten E (1990) Niveles de plomo, cadmio, zinc y cobre en suelos del área metropolitana y suburbana de Buenos Aires. Ciencia del Suelo 8:3–8Google Scholar
  37. Lupi L, Miglioranza K, Aparicio V, Marino D, Bedmar F, Wunderlin D (2015) Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci Total Environ 536:687–694CrossRefGoogle Scholar
  38. Maitre MI, Lorenzatti E, Lenardón A, Enrique S (2008) Adsorción-desorción de glifosato en dos suelos argentinos. Natura Neotropicalis 39:19–31CrossRefGoogle Scholar
  39. Marino D, Ronco A (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75:820–826CrossRefGoogle Scholar
  40. Mendez M, Aimar S, Aparicio V, Ramirez Haberkon N, Buschiazzo D, De Gerónimo E, Costa JL (2017) Glyphosate and aminomethylphosphonic acid (AMPA) contents in the respirable dust emitted by an agricultural soil of the central semiarid region of Argentina. Aeol Res 29:23–29CrossRefGoogle Scholar
  41. Menone ML, Miglioranza KSB, Iribarne O, Aizpún de Moreno JE, Moreno VJ (2004) The role of burrowing beds and burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping organochlorine pesticides. Mar Pollut Bull 48:240–247CrossRefGoogle Scholar
  42. Miglioranza KSB, Aizpún de Moreno JE, Moreno VJ (2004) Organochlorine pesticides sequestered in the aquatic macrophyte Schoenoplectus californicus (C.A. Meyer) Sojak froma shallow lake in Argentina. Water Res 38:1765–1772CrossRefGoogle Scholar
  43. Miretti MC, Pilatti M, Lavado RS, Imhoff SC (2012) Historia del uso del suelo y contenido de micronutrientes en Argiudoles del centro de la Pcia. de Santa Fe. Ciencia del Suelo 30:67–73Google Scholar
  44. Montoya JC, Costa JL, Liedl R, Bedmar F, Daniel P (2006) Effects of soil type and tillage practice on atrazine transport through intact soil cores. Geoderma 137:161–173CrossRefGoogle Scholar
  45. Okada E, Costa JL, Bedmar F (2016) Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 263:78–85CrossRefGoogle Scholar
  46. Orroño DI, Lavado RS (2009) Distribution of extractable heavy metals in different soil fractions. Chem Speciat Bioavailab 21:193–198CrossRefGoogle Scholar
  47. Pessagno RC, Torres Sánchez RM, dos Santos Afonso M (2008) Glyphosate behavior at soil and mineral-water interfaces. Environ Pollut 153:53–59CrossRefGoogle Scholar
  48. Primost JE, Marino DJG, Aparicio VC, Costa JL, Carriquiriborde P (2017) Glyphosate and AMPA, “pseudo-persistent” pollutants under real world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina. Environ Pollut.  https://doi.org/10.1016/j.envpol.2017.06.006
  49. Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 90:649–662CrossRefGoogle Scholar
  50. Rampoldi EA, Hang S, Barriuso E (2014) Carbon-14-glyphosate behavior in relationship to pedoclimatic conditions and crop sequence. J Environ Qual 43:558–567CrossRefGoogle Scholar
  51. Ratto de Miguez S, Lavignolle P, Lavado RS, Canelo H (1989) Lavado de boro en columnas de suelo. Ciencia del Suelo 7:37–42Google Scholar
  52. Reinaudi NB, Lavado RS (1978) Contaminación con arsénico, paralela a la salinización y alcalinización por el agua de riego. Turrialba 28:155–157Google Scholar
  53. Reizábal L, Andrade L, Marcet P, Montero M (2000) Effect of long-term cultivation on zinc and copper contents in soils from the Bahía Blanca horticultural belt (Argentina). Commun Soil Sci Plant Anal 31:1155–1167CrossRefGoogle Scholar
  54. Rodríguez JH, Weller SB, Wannaz ED, Klump A, Pignata ML (2011) Air quality biomonitoring in agricultural areas nearby to urban and industrial emisión sources in Cordoba province, Argentina, employing the bioindicador Tillandsia capillaris. Ecol Ind 11:1673–1680CrossRefGoogle Scholar
  55. Rosenbaum EA, Dusboscq L, Soleño J, Montagna CM, Ferrari A, Venturino A (2012) Response of biomarkers in amphibian larvae to in situ exposure in a fruit-producing region in North Patagonia, Argentina. Environ Toxicol Chem 31:2311–2317CrossRefGoogle Scholar
  56. Sánchez RM, Dunel Guerra L (2017) Salinidad y sodicidad de suelos bajo riego en zonas áridas y semiáridas y su efecto sobre los cultivos. In: En Taleisnik E, Lavado RS (eds), Ambientes salinos y alcalinos de la Argentina: recursos y aprovechamiento productivo. FCA-UCC y OGE. Buenos Aires, 227–249 ppGoogle Scholar
  57. Sasal MC, Andriulo AE, Wilson MG, Portela SI (2010) Pérdidas de Glifosato por Drenaje y Escurrimiento en Molisoles bajo Siembra Directa. Información Tecnológica 2:135–142Google Scholar
  58. Screpanti C, Accinelli C (2005) Glyphosate and glufosinate-ammonium runoff from a corn-growing area in Italy. Agron Sustain Dev 25:407–412CrossRefGoogle Scholar
  59. Teruggi ME, Imbellone PA (1987) Paleosuelos loessicos superpuestos en el pleistoceno superior-holoceno de la región de La Plata. Provincia de Buenos Aires. Ciencia del Suelo 5:175–188Google Scholar
  60. Torri SI, Lavado RS (2002) Distribución y disponibilidad de elementos potencialmente tóxicos en suelos representativos de la provincia de Buenos Aires enmendados con biosólidos. Ciencia del Suelo 20:98–109Google Scholar
  61. Troiani RM, Sanchez TM, Lavado RS (1987) Soil response and alfalfa fluoride content as affected by irrigation water. Fluoride 20:l4–l7Google Scholar
  62. Vercellino M, Gómez MA (2013) Denitrifying capacity of rhizobial strains of Argentine soils and herbicide sensitivity. Ann Microbiol 63:1563–1570CrossRefGoogle Scholar
  63. Wannaz ED, Harguindeguy CA, Jasan R, Plá RR, Pignata ML (2008) Identification of atmospheric trace-element sources by passive biomonitoring employing PCA and variogram analysis. Inter J Environ Anal Chem 88:229–243CrossRefGoogle Scholar
  64. Zabaloy MC, Gómez MA (2008) Microbial respiration in soils of the Argentine Pampas after metsulfuron methyl, 2,4-D, and glyphosate treatments. Commun Soil Sci Plant Anal 39:370–385CrossRefGoogle Scholar
  65. Zabaloy MC, Garland JL, Gomez MA (2010) Assessment of the impact of 2,4-dichlorophenoxyacetic acid (2,4-D) on indigenous herbicide-degrading bacteria and microbial community function in an agricultural soil. Appl Soil Ecol 46:240–246CrossRefGoogle Scholar
  66. Zubillaga MS, Lavado RS (2002) Efecto de la fertilización fosfatada prolongada sobre el contenido de elementos traza en un Argiudol típico. Ciencia del Suelo 20:110–113Google Scholar
  67. Zubillaga MS, Lavado RS (2016) Contaminación física y química del suelo debido al uso de fertilizantes. In: Lavado RS (ed) Sustentabilidad de los agrosistemas y uso de fertilizantes. AACS, FERTILIZAR and OEG. Buenos Aires, pp 121–139Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INBA (CONICET UBA), Facultad AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.INTABalcarceArgentina

Personalised recommendations