Skip to main content

Postharvest Biology and Technology of Apricot

  • Chapter
  • First Online:
Book cover Postharvest Biology and Technology of Temperate Fruits

Abstract

Apricots are an excellent source of nutrients and are cherished for their peculiar flavor. However, high rates of ripening and susceptibility to mechanical injury and diseases limit their shelf life. Being climacteric in nature, ethylene regulates the ripening of apricot fruits. The adoption of different pre- and postharvest treatments like harvesting at optimum maturity, maintenance of cold chain, selection of proper packaging material, and storage atmospheres, decide the postharvest behavior of fruits. For delaying the ripening and maintaining the quality of harvested produce, prompt cooling and low-temperature storage is recommended. However, if apricots are kept at low temperatures for longer durations, chilling injury occurs in the fruits, which is manifested in the form of various symptoms. Therefore, postharvest technology of apricots aims at the reduction of fruit losses as well as optimization of fruit quality throughout the postharvest chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi, N., McGlasson, W. B., Holford, P., Williams, M., & Mizrahi, Y. (1998). Responses of climacteric and suppressed-climacteric plums to treatment with propylene and 1-methylcyclopropene. Postharvest Biology and Technology, 14, 29–39.

    Article  CAS  Google Scholar 

  • Adams-Phillips, L., Barry, C., & Giovannoni, J. (2004). Signal transduction systems regulating fruit ripening. Trends in Plant Science, 9, 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Agar, T., Paydas, S., Buyukalaca, O., Ozkaya, O., Ekinci, F., & Sabr, F. K. (2006). Effect of harvest dates and forced air cooling on post-harvest quality of apricot cv. ‘Precoce de Tyrinthe’. Journal of Food, Agriculture and Environment, 4, 107–108.

    Google Scholar 

  • Ahmadi, H., Fathollahzadeh, H., & Mobli, H. (2008). Some physical and mechanical properties of apricot fruits, pits and kernels (CV Tabarzeh). American-Eurasian Journal of Agriculture & Environmental Sciences, 3, 703–707.

    Google Scholar 

  • Ali, S., Masud, T., & Abbasi, K. S. (2011). Physico-chemical characteristics of apricot (Prunus armeniaca L.) grown in Northern Areas of Pakistan. Scientia Horticulturae, 130, 386–392.

    Article  CAS  Google Scholar 

  • Antunes, M. D. C., Correia, M. P., Miguel, M. G., Martins, M. A., &Neves, M. A. (2003). The effect of calcium chloride postharvest application on fruit storage ability and quality of ‘Beliana’ and ‘Lindo’ apricot (Prunus armeniaca L.) cultivars. In International conference on quality in chains. An integrated view on fruit and vegetable quality (vol. 604, pp. 721–726).

    Google Scholar 

  • Arvanitoyannis, I. S. (2010). Irradiation of food commodities: Techniques, applications, detection, legislation, safety and consumer opinion (p. 736). New York: Academic Press.

    Google Scholar 

  • Aubert, C., & Chanforan, C. (2007). Postharvest changes in physicochemical properties and volatile constituents of apricot (Prunus armeniaca L.) characterization of 28 cultivars. Journal of Agricultural and Food Chemistry, 55, 3074–3082.

    Article  CAS  PubMed  Google Scholar 

  • Aubert, C., Bony, P., Chalot, G., & Hero, V. (2010). Changes in physicochemical characteristics and volatile compounds of apricot (Prunus armeniaca L. cv. Bergeron) during storage and post-harvest maturation. Food Chemistry, 119, 1386–1398.

    Article  CAS  Google Scholar 

  • Ayour, J., Sagar, M., Alfeddy, M. N., Taourirte, M., & Benichou, M. (2016). Evolution of pigments and their relationship with skin color based on ripening in fruits of different Moroccan genotypes of apricots (Prunus armeniaca L.) Scientia Horticulturae, 207, 168–175.

    Article  CAS  Google Scholar 

  • Ayub, R., Guis, M., Ben Amor, M., Gillot, L., Roustan, J. P., Latché, A., Bouzayen, M., & Pech, J. C. (1996). Expression of ACC oxidase antisense gene inhibits ripening. Nature Biotechnology, 14, 862–866.

    Article  CAS  PubMed  Google Scholar 

  • Bartolozzi, F., Bertazza, F., Bassi, F., & Cristoferi, F. (1997). Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas liquid chromatography. Journal of Chromatography A, 758, 99–107.

    Article  PubMed  Google Scholar 

  • Baysal, T., Bilek, S. E., & Apaydin, E. (2010). The effect of corn zein edible film coating on intermediate moisture apricot (Prunus armenica L.) quality. Gida, 35(4), 245–249.

    Google Scholar 

  • Beaudry, R. M. (1999). Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biology and Technology, 15, 293–303.

    Article  Google Scholar 

  • Botondi, R., Desantis, D., Bellincontro, A., Vizovitis, K., & Mencarelli, F. (2003). Influence of ethylene inhibition by 1-methylcyclopropene on apricot quality, volatile production, and glycosidase activity of low- and high-aroma varieties of apricots. Journal of Agricultural and Food Chemistry, 51, 1189–1200.

    Article  CAS  PubMed  Google Scholar 

  • Bruhn, C., Feldman, N., Garlitz, C., Harwood, J., Ivans, E., Marshall, M., Riley, A., Thurber, D., & Williamson, E. (1991). Consumer perceptions of quality: apricots, cantaloupes, peaches, pears, strawberries, and tomatoes. Journal of Food Quality, 14, 187–195.

    Article  Google Scholar 

  • Brummell, D. A. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology, 33, 103–119.

    Article  CAS  Google Scholar 

  • Cameron, A. C., Beaudry, R. M., Banks, N. H., & Yelanich, M. V. (1994). Modified-atmosphere packaging of blueberry fruit: modeling respiration and package oxygen partial pressures as a function of temperature. Journal of the American Society for Horticultural Science, 119, 534–539.

    Google Scholar 

  • Camps, C., & Christen, D. (2009). Non-destructive assessment of apricot fruit quality by portable visible-near infrared spectroscopy. LWT-Food Science and Technology, 42, 1125–1131.

    Article  CAS  Google Scholar 

  • Cardarelli, M., Botondi, R., Vizovitis, K., & Mencarelli, F. (2002). Effects of exogenous propylene on softening, glycosidase, and pectinmethylesterase activity during postharvest ripening of apricots. Journal of Agricultural and Food Chemistry, 50, 1441–1446.

    Article  CAS  PubMed  Google Scholar 

  • Carlos, H. C., & Kader, A. A. (1999). Apricots postharvest quality maintenance guidelines. Davis: Department of Pomology, University of California, Davis.

    Google Scholar 

  • Carocho, M., Barros, L., Antonio, A. L., Barreira, J. C., Bento, A., Kaluska, I., & Ferreira, I. C. (2013). Analysis of organic acids in electron beam irradiated chestnuts (Castanea sativa Mill.): Effects of radiation dose and storage time. Food and Chemical Toxicology, 55, 348–352.

    Article  CAS  PubMed  Google Scholar 

  • Chan, Z. L., Qin, G. Z., Xu, X. B., Li, B. Q., & Tian, S. P. (2007). Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. Journal of Proteome Research, 6, 1677–1688.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P., & Sun, Z. (1991). A review of non-destructive methods for quality evaluation and sorting of agricultural products. Journal of Agricultural Engineering Research, 49, 85–98.

    Article  Google Scholar 

  • Claypool, L. L., & Pangborn, R. M. (1972). Influence of controlled atmosphere storage on quality of canned apricots. Journal of the American Society for Horticultural Science, 97, 636–638.

    Google Scholar 

  • Crisosto, C. H., Mitchell, F. G., & Zhiguo, J. (1999). Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience, 34, 1116–1118.

    Google Scholar 

  • Crouzet, J., Etievant, P., & Bayonove, C. (1990). Stoned fruit: Apricot, plum, peach, cherry. In I. D. Morton & A. J. Macleod (Eds.), Food flavours. Part C: the flavour of fruits (pp. 43–91). Amsterdam: Elsevier.

    Google Scholar 

  • Dandekar, A. M., Teo, G., Defilippi, B. G., Uratsu, S. L., Passey, A. J., Kader, A. A., Stow, J. R., Colgan, R. J., & James, D. J. (2004). Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Research, 13, 373–384.

    Article  CAS  Google Scholar 

  • De Martino, G., Massantini, R., Botondi, R., & Mencarelli, F. (2002). Temperature affects impact injury on apricot fruit. Postharvest Biology and Technology, 21, 331–339.

    Google Scholar 

  • De Martino, G., Vizovitis, K., Botondi, R., Bellincontro, A., & Mencarelli, F. (2006). 1-MCP controls ripening induced by impact injury on apricots by affecting SOD and POX activities. Postharvest Biology and Technology, 39, 38–47.

    Article  CAS  Google Scholar 

  • Defilippi, B. G., Kader, A. A., & Dandekar, A. M. (2005). Apple aroma: Alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Science, 168, 1199–1210.

    Article  CAS  Google Scholar 

  • Defilippi, B. G., San Juan, W., Valdes, H., Moya-Leon, M. A., Infante, R., & Campos-Vargas, R. (2009). The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis. Postharvest Biology and Technology, 51, 212–219.

    Article  CAS  Google Scholar 

  • Dong, L., Lurie, S., & Zhou, H. W. (2002). Effect of 1-methylcyclopropene on ripening of ‘Canino’ apricots and ‘Royal Zee’ plums. Postharvest Biology and Technology, 24, 135–145.

    Article  CAS  Google Scholar 

  • Dragovic-Uzelac, V., Levaj, B., Mrkicm, V., Bursac, D., & Boras, M. (2007). The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry, 102, 966–975.

    Article  CAS  Google Scholar 

  • Egea, M. I., Murcia, M. A., Sanchez-Bel, P., Romojaro, F., & Martínez-Madrid, M. C. (2004). Effect of electron beam ionization on shelf life of apricot. In V International Postharvest Symposium (Vol. 682, pp. 1211–1218).

    Google Scholar 

  • El-Sharkawy, I., Kim, W. S., Jayasankar, S., Svircev, A. M., & Brown, D. C. W. (2008). Differential regulation of four members of the ACC synthase gene family in plum. Journal of Experimental Botany, 59, 2009–2027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdogan-Orhan, I., & Kartal, M. (2011). Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Research International, 44, 1238–1243.

    Article  CAS  Google Scholar 

  • Fan, X., Argenta, L., & Mattheis, J. P. (2000). Inhibition of ethylene action by 1-methylcyclopropene prolongs storage life of apricots. Postharvest Biology and Technology, 20, 135–142.

    Article  CAS  Google Scholar 

  • FAOSTAT. (2014). http://www.fao.org/faostat/en/#compare

  • Feng, J., Stanley, J., Othman, M., Woolf, A., Kosasih, M., Olsson, S., Clare, G., Cooper, N., & Wanga, X. (2013). Segregation of apricots for storage potential using non-destructive technologies. Postharvest Biology and Technology, 86, 17–22.

    Article  Google Scholar 

  • Ghasemnezhad, M., Shiri, M. A., & Sanavi, M. (2010). Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Caspian Journal of Environmental Sciences, 8, 25–33.

    Google Scholar 

  • Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 725–749.

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni, J. (2004). Genetic regulation of fruit development and ripening. Plant Cell, 16, S170–S180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez, A. H., Pereira, A. G., Jun, W., & Yong, H. (2005). Acoustic testing for peach fruit ripeness evaluation during peach storage stage. Revista Ciencias Tecnicas Agropecuarias, 14, 28–33.

    Google Scholar 

  • Gorny, J. R., & Kader, A. A. (1997). Low oxygen and elevated carbon dioxide atmospheres inhibit ethylene biosynthesis in pre-climacteric and climacteric apple fruit. Journal of the American Society for Horticultural Science, 122, 542–546.

    CAS  Google Scholar 

  • Goulao, L. F., & Oliveira, C. M. (2008). Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends in Food Science and Technology, 19, 4–25.

    Article  CAS  Google Scholar 

  • Grotte, M., Gouble, B., Reling, P., Boge, M., & Audergon, J. M. (2006). Sampling methods of fruits applied to the quality characterization of apricot fruits. Fruits, 61, 135–147.

    Article  Google Scholar 

  • Guclu, K., Altun, M., Ozyurek, M., Karademir, S. E., & Apak, R. (2006). Antioxidant capacity of fresh, sun-dried and sulphited Malatya apricot (Prunus armeniaca L) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science & Technology, 41, 76–85.

    Article  CAS  Google Scholar 

  • Guelfat-Reich, S., & Ben-Arie, R. (1967). Different factors affecting the keeping quality of ‘Canino’ apricots in cold storage. In: Proceedings of the 12th International Congress on Refrigeration (Vol. 3, pp. 447–457).

    Google Scholar 

  • Hortensteiner, S. (2006). Chlorophyll degradation during senescence. Annual Review of Plant Biology, 57, 55–77.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, P. R., Meena, R. S., Dar, M. A., & Wani, A. M. (2011). Gamma irradiation of sun-dried apricots (Prunus armeniaca L.) for quality maintenance and quarantine purposes. Radiation Physics and Chemistry, 80(7), 817–827.

    Article  CAS  Google Scholar 

  • Ishaq, S., Rathore, H. A., Masud, T., & Ali, S. (2009). Influence of postharvest calcium chloride application, ethylene absorbent and modified atmosphere on quality characteristics and shelf life of apricot (Prunus armeniaca L.) fruit during storage. Pakistan Journal of Nutrition, 8, 861–865.

    Google Scholar 

  • Jeong-Ok, L., Seong, A. L., Mi-Seon, K., Hye-Rim, H., Kyoung-Hee, K., Jong-Pil, C., & Hong-Sun, Y. (2008). The effects of low-dose electron beam irradiation on quality characteristics of stored apricots. Journal of the Korean Society of Food Science and Nutrition, 37, 934–941.

    Google Scholar 

  • Jiang, Y., Hu, X., Liu, Q., Ren, L., & Tang, W. (2010). Effects of chitosan on post-harvest quality of apricot fruits during storage. Transactions of the Chinese Society of Agricultural Engineering, 26(1), 343–349.

    Google Scholar 

  • Jiménez, A. M., Martínez-Tomé, M., Ega, I., Romojaro, F., & Murcia, M. A. (2008). Effect of industrial processing and storage on antioxidant activity of apricot (Prunus armeniaca v. bulida). European Food Research and Technology, 227, 125–134.

    Article  CAS  Google Scholar 

  • Johnson, E. J. (2002). The role of carotenoids in human health. Nutrition in Clinical Care, 5, 56–65.

    Article  PubMed  Google Scholar 

  • Kalyoncu, I. H., Akbulut, M., & Coklar, H. (2009). Antioxidant capacity, total phenolics and some chemical properties of semi-mature apricot cultivars grown in Malatya, Turkey. World Applied Science, 6, 519–523.

    CAS  Google Scholar 

  • Kantor, D. B., Hitka, G., Fekete, A., & Balla, C. (2008). Electronic tongue for sensing taste changes with apricots during storage. Sensors and Actuators B, 131, 43–47.

    Article  CAS  Google Scholar 

  • Kosto, I., Weksler, A., & Lurie, S. (2000). Extending storage of apricots. Alon Hanotea, 54, 250–254.

    Google Scholar 

  • Kosto, I., Weksler, A., & Lurie, S. (2002). Modified atmosphere storage of apricots. Alon Hanotea, 56, 173–175.

    Google Scholar 

  • Koyuncu, M. A., Dilmaçünal, T., & Özdemir, O. (2010). Modified and controlled atmosphere storage of apricots. Acta Horticulturae, 876, 55–66.

    Article  Google Scholar 

  • Kurz, C., Carle, R., & Schieber, A. (2008). HPLC-DAD-MS characterization of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity. Food Chemistry, 110, 522–530.

    Article  CAS  PubMed  Google Scholar 

  • Kuzucu, F. C., & Önder, A. (2010). Effects of different packaging applications on fruit quality of apricots. In 2nd International Symposium on Sustainable Development, 2010, Sarajevo (pp. 133–143).

    Google Scholar 

  • Lelievre, J. M., Latche, A., Jones, B., Bouzayen, M., & Pech, J. C. (1997). Ethylene and fruit ripening. Physiologia Plantarum, 101, 727–739.

    Article  CAS  Google Scholar 

  • Lin, Z., Zhong, S., & Grierson, D. (2009). Recent advances in ethylene research. Journal of Experimental Botany, 60, 3311–3336.

    Article  CAS  PubMed  Google Scholar 

  • Luchsinger, L. E., & Walsh, C. S. (1998). Development of an objective and non-destructive harvest maturity index for peaches and nectarines. Acta Horticulturae, 465, 679–687.

    Article  Google Scholar 

  • Mangaraj, S., Goswami, T. K., & Mahajan, P. V. (2009). Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Engineering Reviews, 1, 133–158.

    Article  CAS  Google Scholar 

  • Manolopoulou, H., & Mallidis, C. (1999). Storage and processing of apricots. Acta Horticulturae, 488, 567–576.

    Article  Google Scholar 

  • Martínez-Romero, D., Serrano, M., Carbonell, A., Burgos, L., Riquelme, F., & Valero, D. (2002). Effects of postharvest putrescine treatment on extending shelf life and reducing mechanical damage in apricot. Journal of Food Science, 67, 1706–1712.

    Article  Google Scholar 

  • Mencarelli, F., Botondi, R., DeSantis, D., & Vizovitis, K. (2001). Postharvest quality maintenance of fresh apricots. In XII International Symposium on Apricot Culture and Decline, September 10–14, Avignon, France.

    Google Scholar 

  • Miller, A. R. (1992). Physiology, biochemistry and detection of bruising (mechanical stress) in fruits and vegetables. Postharvest News and Information, 3, 53–58.

    Google Scholar 

  • Morandi, B., Grappadelli, L. G., Rieger, M., & Lo Bianco, R. (2008). Carbohydrate availability affects growth and metabolism in peach fruit. Physiologia Plantarum, 133, 229–241.

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Robredo, P., Rubio, P., Infante, R., Campos-Vargas, R., Manríquez, D., González-Agüero, M., & Defilippi, B. G. (2012). Ethylene biosynthesis in apricot: Identification of a ripening-related 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene. Postharvest Biology and Technology, 63, 85–90.

    Article  CAS  Google Scholar 

  • Nijssen, L.M., Visscher, C.A., Maarse, H., Willemsens, L.C., & Boelens, M.H. (2007). Volatile compounds in foods qualitative and quantitative data. Zeist, The Netherlands: TNO Nutrition and Food Research Institute, online version 9.2.

    Google Scholar 

  • Pala, M., Damarli, E., & Gün, H. (1994). The effects of modified atmosphere packaging on quality and storage life of apricot. Acta Horticulturae, 368, 808–816.

    Article  Google Scholar 

  • Palou, L., & Crisosto, C. H. (2003). Postharvest treatments to reduce the harmful effects of ethylene on apricots. Acta Horticulturae, 599, 31–38.

    Article  CAS  Google Scholar 

  • Peano, C., Giuggioli, N. R., & Girgenti, V. (2014). Effects of innovative packaging materials on apricot fruits (cv Tom Cot®). Fruits, 69, 247–258.

    Article  CAS  Google Scholar 

  • Perez-Pastor, A., Ruiz-Sanchez, M. C., Martınez, J. A., Nortes, P. A., Artes, F., & Domingo, R. (2007). Effect of deficit irrigation on apricot fruit quality at harvest and during storage. Journal of the Science of Food and Agriculture, 87, 2409–2415.

    Article  CAS  Google Scholar 

  • Petrisor, C., Radu, G. L., & Cimpeanu, G. (2010). Quantification of physico-chemical changes during apricot ripening through non-destructive methods. Revista de Chimie, 61, 345–350.

    CAS  Google Scholar 

  • Pretel, M. T., Souty, M., & Romojaro, F. (2000). Use of passive and active modified atmosphere packaging to prolong the postharvest life of three varieties of apricot (Prunus armeniaca L.) European Food Research International, 211, 191–198.

    Article  CAS  Google Scholar 

  • Rhodes, M. J. C. (1980). The maturation and ripening of fruits. In K. V. Thimann (Ed.), Senescence in plants (pp. 157–205). Boca Raton: CRC Press.

    Google Scholar 

  • Riu-Aumatell, M., Lopez-Tamames, E., & Buxadera, S. (2005). Assessment of the volatile composition of juices of apricot, peach, and pear according to two pectolytic treatments. Journal of Agricultural and Food Chemistry, 53, 7837–7843.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz, D., Egea, J., Tomás-Barberán, F. A., & Gil, M. I. (2005). Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. Journal of Agricultural and Food Chemistry, 53, 6368–6374.

    Article  CAS  PubMed  Google Scholar 

  • Saba, M. K., Arzani, K., & Barzegar, M. (2012). Postharvest polyamine application alleviates chilling injury and affects apricot storage ability. Journal of Agricultural and Food Chemistry, 60, 8947–8953.

    Google Scholar 

  • Sartaj, A., Tariq, M., Kashif, S. A., Talat, M., & Ijlal, H. (2013). Influence of CaCl on biochemical composition, antioxidant and enzymatic activity of apricot at ambient storage. Pakistan Journal of Nutrition, 12, 476–483.

    Article  Google Scholar 

  • Schieber, A., & Carle, R. (2005). Occurrence of carotenoid cis-isomers in food: technological, analytical, and nutritional implications. Trends in Food Science & Technology, 16, 416–422.

    Article  CAS  Google Scholar 

  • Serrano, M., Guillen, F., Martinez-Romero, D., Castillo, S., & Valero, D. (2005). Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. Journal of Agricultural and Food Chemistry, 53, 2741–2745.

    Article  CAS  PubMed  Google Scholar 

  • Stanley, J., Marshall, R., Tustin, S., & Woolf, A. (2014). Preharvest factors affect apricot fruit quality. Acta Horticulturae, 1058, 269–276.

    Article  Google Scholar 

  • Şümnü, G., & Baymdirh, L. (1995). Effects of sucrose polyester coating on fruit quality of apricots (Prunus armenaica (L)). Journal of the Science of Food and Agriculture, 67(4), 537–540.

    Article  Google Scholar 

  • Tang, C., & Jennings, W. (1967). Volatile components of apricots. Journal of Agricultural and Food Chemistry, 15, 24–28.

    Article  CAS  Google Scholar 

  • Tang, C., & Jennings, W. (1968). Lactonic compounds of apricots. Journal of Agricultural and Food Chemistry, 16, 252–254.

    Article  CAS  Google Scholar 

  • Tareen, M. J., Abbasi, N. A., & Hafizb, I. A. (2012). Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. ‘Flordaking’ fruit during storage. Acta Horticulturae, 142, 221–228.

    CAS  Google Scholar 

  • Tassoni, A., Antagnoni, F., Battistini, M. L., Sanvido, O., & Bagni, N. (1989). Characterization of spermidine binding to solubilized plasma membrane. Plant Physiology, 117, 971–977.

    Article  Google Scholar 

  • Tonini, G., & Caccioni, D. (1991). Precooling of apricot: influence on rot, ripening and weight loss. Acta Horticulturae, 293, 701–704.

    Article  Google Scholar 

  • Truter, A. B., & Combrink, J. C. (1997). Controlled atmosphere storage of South African plums. In Proceedings of the International Controlled Atmosphere Conference (Vol. 3, pp. 54–61). Davis, CA: University of California.

    Google Scholar 

  • Tucker, G. A., & Grierson, D. (1987). Fruit ripening. In D. Davies (Ed.), The biochemistry of plants (Vol. 12, pp. 265–319). New York: Academic.

    Google Scholar 

  • Tzoutzoukou, C. G., & Bouranis, D. L. (1997). Effect of preharvest application of calcium on the postharvest physiology of apricot fruit. Journal of Plant Nutrition, 20(2–3), 295–309.

    Article  CAS  Google Scholar 

  • Valdés, H., Pizarro, M., Campos-Vargas, R., Infante, R., & Defilippi, B. G. (2009). Effect of ethylene inhibitors on quality attributes of apricot cv. Modesto and Patterson during storage. Chilean Journal of Agricultural Research, 69, 134–144.

    Article  Google Scholar 

  • Valero, D., & Serrano, M. (2010). Postharvest biology and technology for preserving fruit quality. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Varoquaux, P., Gouble, B., Ducamp, M. N., & Self, G. (2002). Procedure to optimize modified atmosphere packaging for fruit. Fruits, 57, 313–322.

    Article  Google Scholar 

  • Wang, Z., Ma, L., Zhang, X., Xu, L., Cao, J., & Jiang, W. (2015). The effect of exogenous salicylic acid on antioxidant activity, bioactive compounds and antioxidant system in apricot fruit. Scientia Horticulturae, 181, 113–120.

    Article  CAS  Google Scholar 

  • Wankier, B. N., Salunkhe, D. K., & Campbell, W. F. (1970). Effects of controlled atmosphere storage on biochemical changes in apricot and peach fruit. Journal of the American Society for Horticultural Science, 95, 604–609.

    CAS  Google Scholar 

  • Watkins, C. B. (2006). The use of 1-methylcyclopropene on fruits and vegetables. Biotechnology Advances, 24, 389–409.

    Article  CAS  PubMed  Google Scholar 

  • Wei, M., Zhou, L., Song, H., Yi, J., Wu, B., Li, Y., Zhang, L., Che, F., Wang, Z., Gao, M., & Li, S. (2014). Electron beam irradiation of sun-dried apricots for quality maintenance. Radiation Physics and Chemistry, 97, 126–133.

    Article  CAS  Google Scholar 

  • Wu, B., Guo, Q., Wang, G. X., Peng, X. Y., Wang, J. D., & Che, F. B. (2015). Effects of different postharvest treatments on the physiology and quality of ‘Xiaobai’ apricots at room temperature. Journal of Food Science and Technology, 52, 2247–2255.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J., Song, Y., Li, J., & Jiang, W. (2017). Forced-air precooling treatment enhanced antioxidant capacities of apricots. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.13320.

  • Zhou, H. W., Ben Arie, R., & Lurie, S. (2000). Pectin esterase, polygalacturonase and gel formation in peach pectin fraction. Phytochemistry, 55, 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Zokaee Khosroshahi, M. R., & Esna-Ashari, M. (2007). Post-harvest putrescine treatments extend the storage-life of apricot (Prunus armeniaca L.) ‘Tokhm-sefid’ fruit. The Journal of Horticultural Science and Biotechnology, 82(6), 986–990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muzzaffar, S., Bhat, M.M., Wani, T.A., Wani, I.A., Masoodi, F.A. (2018). Postharvest Biology and Technology of Apricot. In: Mir, S., Shah, M., Mir, M. (eds) Postharvest Biology and Technology of Temperate Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-76843-4_8

Download citation

Publish with us

Policies and ethics