Skip to main content

Postharvest Biology and Technology of Peach

  • Chapter
  • First Online:
Postharvest Biology and Technology of Temperate Fruits

Abstract

Peach is a climacteric fruit and undergoes rapid ripening after harvest. The fast ripening of the fruit is responsible for its short shelf life and represents a serious constraint for its efficient handling and transportation. Quick softening of the fruit after harvest and subsequent mold growth leads to huge losses in the marketing chain of the fruit. This chapter mainly sums up recent studies about the maturation parameters, ripening, physiological disorders, microbiological disorders, and postharvest techniques (cold storage, controlled atmosphere storage, and modified atmosphere packaging) of peach fruit. Various treatments, including physical (heat treatment, intermittent warming, irradiation, and edible coatings) and chemical methods (1-methylcyclopropene, salicylic acid, methyl jasmonate, calcium chloride, oxalic acid, melatonin, and nitric oxide), have been applied to peach fruit to enhance its shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, M. S., & Siddiqui, M. W. (2015). Factors affecting postharvest quality of fresh fruits. InPostharvest quality assurance of fruits. Cham: Springer.

    Chapter  Google Scholar 

  • Ahmed, C. B., Rouina, B. B., Sensoy, S., & Boukhriss, M. (2009). Saline water irrigation effects on fruit development, quality, and phenolic composition of virgin olive oils, cv. Chemlali. Journal of Agricultural and Food Chemistry, 57(7), 2803–2811.

    Article  PubMed  CAS  Google Scholar 

  • Asghar, A., Zeb, A., Farooq, K., Qazi, I. M., Ahmad, S., Sohail, M., Islam, M. S., & Shinwari, A. (2014). Effect of edible gum coating, glycerin and calcium lactate treatment on the post-harvest quality of peach fruit. Food Science and Quality Management, 30, 40–47.

    Google Scholar 

  • Bakshi, P., & Masoodi, F. A. (2010). Effect of pre-storage heat treatment on enzymological changes in peach. Journal of Food Science and Technology, 47(4), 461–464.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassi, D., & Monet, R. (2008). Botany and taxonomy. In D. R. Layne & D. Bassi (Eds.), The peach: Botany, production and uses (pp. 1–36). Wallingford: CAB International.

    Google Scholar 

  • Belhadj, F., Somrani, I., Aissaoui, N., Messaoud, C., Boussaid, M., & Marzouki, M. N. (2016). Bioactive compounds contents, antioxidant and antimicrobial activities during ripening of Prunus persica L. varieties from the North West of Tunisia. Food Chemistry, 204, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, P., East, A. R., Brecht, J. K., Hewett, E. W., & Heyes, J. A. (2012). Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biology and Technology, 74, 71–78.

    Article  Google Scholar 

  • Blankenship, S. M., & Dole, J. M. (2003). 1-Methylcyclopropene: A review. Postharvest Biology and Technology, 28, 1–25.

    Article  CAS  Google Scholar 

  • Borsani, J., Budde, C. O., Porrini, L., Lauxmann, M. A., Lombardo, V. A., Murray, R., Andreo, C. S., Drincovich, M. F., & Lara, M. V. (2009). Carbon metabolism of peach fruit after harvest: Changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany, 60(6), 1823–1837.

    Article  PubMed  CAS  Google Scholar 

  • Bosquez-Molina, E., Ronquillo-de Jesús, E., Bautista-Banos, S., Verde-Calvo, J. R., & Morales-Lopez, J. (2010). Inhibitory effect of essential oils against Colletotrichum gloeosporioides and Rhizopus stolonifer in stored papaya fruit and their possible application in coatings. Postharvest Biology and Technology, 57, 132–137.

    Article  CAS  Google Scholar 

  • Brummell, D. A. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology, 33(2), 103–119.

    Article  CAS  Google Scholar 

  • Brummell, D. A., Cin, V. D., Crisosto, C. H., & Labavitch, J. M. (2004). Cell wall metabolism during maturation, ripening and senescence of peach fruit. Journal of Experimental Botany, 55(405), 2029–2039.

    Article  PubMed  CAS  Google Scholar 

  • Byrne, D. H. (2002). Peach breeding trends: A world wide perspective. Acta Horticulturae, 592, 49–59.

    Article  Google Scholar 

  • Callahan, A. M., Scorza, R., Bassett, C., Nickerson, M., & Abeles, F. B. (2004). Deletions in an endopolygalacturonase gene cluster correlate with non-melting flesh texture in peach. Functional Plant Biology, 31(2), 159–168.

    Article  CAS  Google Scholar 

  • Cao, S. F., Song, C. B., Shao, J. R., Bian, K., Chen, W., & Yang, Z. F. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. Journal of Agricultural and Food Chemistry, 64, 5215–5222.

    Article  PubMed  CAS  Google Scholar 

  • Carbonaro, M., Mattera, M., Nicoli, S., Bergamo, P., & Cappelloni, M. (2002). Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.) Journal of Agricultural and Food Chemistry, 50(19), 5458–5462.

    Article  PubMed  CAS  Google Scholar 

  • Cetinkaya, N., Ozyardimci, B., Denli, E., & Ic, E. (2006). Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots. Radiation Physics and Chemistry, 75(3), 424–431.

    Article  CAS  Google Scholar 

  • Cirilli, M., Bassi, D., & Ciacciulli, A. (2016). Sugars in peach fruit: A breeding perspective. Horticulture Research, 3, 15067. https://doi.org/10.1038/hortres.2015.67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crisosto, C. H., Mitcham, E. J., & Kader, A. A. (2008). Plums, peach and nectarines. Recommendation for Maintaining Postharvest Quality. http://postharvest.ucdavis.edu/Commodity_Resources/Fact_Sheets/Datastores/Fruit_English/?uid=39&ds=798

  • Crisosto, C. H., Mitchell, F. G., & Ju, Z. (1999). Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience, 34, 1116–1118.

    Google Scholar 

  • Dabbou, S., Lussiana, C., Maatallah, S., Gasco, L., Hajlaoui, H., & Flamini, G. (2016). Changes in biochemical compounds in flesh and peel from Prunus persica fruits grown in Tunisia during two maturation stages. Plant Physiology and Biochemistry, 100, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J. L., Dietrich, R. A., & Thomas, H. (2000). Senescence and programmed cell death. InBiochemistry and molecular biology of plants (1st ed.). Rockville: American Society of Plant Physiologist.

    Google Scholar 

  • de Santana, L. R. R., Benedetti, B. C., Sigrist, J. M. M., Sato, H. H., & de Almeida Anjos, V. D. (2011a). Effect of controlled atmosphere on postharvest quality of ‘Douradão’ peaches. Ciência e Tecnologia de Alimentos, 31(1), 231–237.

    Article  Google Scholar 

  • de Santana, L. R. R., Benedetti, B. C., Sigrist, J. M. M., & Sato, H. H. (2011b). Effects of modified atmosphere packaging on ripening of ‘Douradão’ peach related to pectolytic enzymes activities and chilling injury symptoms. Revista Brasileira de Fruticultura, 33(4), 1084–1094.

    Article  Google Scholar 

  • de Souza, A. V., Kohatsu, D. S., Lima, G. P. P., & Vieites, R. L. (2009). Conservação pós-colheita de pêssego com o uso da refrigeração e da irradiação. Revista Brasileira de Fruticultura, 31, 1184–1189.

    Article  Google Scholar 

  • Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for new a paradigm? Postharvest Biology and Technology, 52(2), 137–145.

    Article  Google Scholar 

  • Europêch. (2011). Prévisions de racolte europeene de Pêche, Nectarine et Pavie. Perpignan, 28th April.

    Google Scholar 

  • Fan, X., Mattheis, J. P., Fellman, J. K., & Patterson, M. E. (1997). Effect of methyl jasmonate on ethylene and volatile production by summerred apples depends on fruit developmental stage. Journal of Agricultural & Food Chemistry, 45(1), 208–211.

    Article  CAS  Google Scholar 

  • FAOSTAT. (2015). Statistics Division of FAO. Accessed August, 2015, from http://faostat.fao.org/

    Google Scholar 

  • Farneti, B., Gutierrez, M. S., Novak, B., Busatto, N., Ravaglia, D., Spinelli, F., & Costa, G. (2015). Use of the index of absorbance difference (I AD) as a tool for tailoring post-harvest 1-MCP application to control apple superficial scald. Scientia Hoticulturae, 190, 110–116.

    Article  CAS  Google Scholar 

  • Fernández-Trujillo, J. P., & Artés, F. (1997). Quality improvement of peaches by intermittent warming and modified-atmosphere packaging. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 205, 59–63.

    Article  Google Scholar 

  • Fernández-Trujillo, J. P., & Artés, F. (1998). Chilling injuries in peaches during conventional and intermittent warming storage. International Journal of Refrigeration, 21(4), 265–272.

    Article  Google Scholar 

  • Fernández-Trujillo, J. P., Martínez, J. A., & Artés, F. (1998). Modified atmosphere packaging affects the incidence of cold storage disorders and keeps ‘flat’ peach quality. Food Research International, 31(8), 571–579.

    Article  Google Scholar 

  • Fernández-Trujillo, J. P., Cano, A., & Artés, F. (2000). Interactions among cooling, fungicide and postharvest ripening temperature on peaches. International Journal of Refrigeration, 23(6), 457–465.

    Article  Google Scholar 

  • Ferrer, A., Remón, S., Negueruela, A. I., & Oria, R. (2005). Changes during the ripening of the very late season Spanish peach cultivar Calanda: Feasibility of using CIELAB coordinates as maturity indices. Scientia Horticulturae, 105(4), 435–446.

    Article  CAS  Google Scholar 

  • Flores, F. B., Sánchez-Bel, P., Valdenegro, M., Romojaro, F., Martínez-Madrid, M. C., & Egea, I. E. (2008). Effects of a pretreatment with nitric oxide on peach (Prunus persica L.) storage at room temperature. European Food Research and Technology, 227, 1599–1611.

    Article  CAS  Google Scholar 

  • Fruk, G., Cmelik, Z., Jemric, T., Hribar, J., & Vidrih, R. (2014). Pectin role in woolliness development in peaches and nectarines: A review. Scientia Horticulturae, 180, 1–5.

    Article  CAS  Google Scholar 

  • Gad, M. M., Zagzog, O. A., & Hemeda, O. M. (2016). Development of nano-chitosan edible coating for peach fruits cv. Desert Red. International Journal of Environment, 5(4), 43–55.

    Google Scholar 

  • Gang, C., Li, J., Chen, Y., Wang, Y., Li, H., Pan, B., & Odeh, I. (2014). Synergistic effect of chemical treatments on storage quality and chilling injury of honey peaches. Journal of Food Processing and Preservation, 39(6), 1108–1117.

    Article  CAS  Google Scholar 

  • Gao, H., Zhang, Z. K., Chai, H. K., Cheng, N., Yang, Y., Wang, D. N., Yang, T., & Cao, W. (2016). Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology, 118, 103–110.

    Article  CAS  Google Scholar 

  • Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659–666.

    Article  PubMed  CAS  Google Scholar 

  • Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., & Kader, A. A. (2002). Antioxidant capacities, phenolics compounds, carotenoids, and vitamin C content of nectarine, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry, 50(17), 4976–4982.

    Article  PubMed  CAS  Google Scholar 

  • Giné-Bordonaba, J., Cantín, C. M., Echeverría, G., Ubach, D., & Larrigaudière, C. (2016). The effect of chilling injury-inducing storage conditions on quality and consumer acceptance of different Prunus persica cultivars. Postharvest Biology and Technology, 115, 38–47.

    Article  Google Scholar 

  • Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 725–749.

    Article  PubMed  CAS  Google Scholar 

  • Girardi, C. L., Corrent, A. R., Lucchetta, L., Zanuzo, M. R., da Costa, T. S., Brackmann, A., Twyman, R. M., Nora, F. R., Nora, L., Silva, J. A., & Rombalbi, C. V. (2005). Effect of ethylene, intermittent warming and controlled atmosphere on postharvest quality and the occurrence of woolliness in peach (Prunus persica cv. Chiripá) during cold storage. Postharvest Biology and Technology, 38(1), 25–33.

    Article  CAS  Google Scholar 

  • Goristein, S., Martín-Belooso, O., Lojek, A., Číž, M., Soliva-Fortuny, R., Park, Y. S., Caspi, A., Libman, I., & Trakhtenberg, S. (2002). Comparative content of some phytochemicals in Spanish apples, peaches and pears. Journal of the Science of Food and Agriculture, 82(10), 1166–1170.

    Article  CAS  Google Scholar 

  • Goulao, L. F., & Olivera, C. M. (2008). Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends in Food Science & Technology, 19(1), 4–25.

    Article  CAS  Google Scholar 

  • Gu, R., Zhu, S., Zhou, J., Liu, N., & Shi, J. (2014). Inhibition on brown rot disease and induction of defence response in harvested peach fruit by nitric oxide solution. European Journal of Plant Pathology, 139(2), 369–378.

    Article  CAS  Google Scholar 

  • Guillén, F., Díaz-Mula, H. M., Zapata, P. J., Valeroa, D., Serrano, M., Castilloa, S., & Martínez-Romero, D. (2013). Aloe arborescens and Aloe vera gels as coatings in delaying postharvest ripening in peach and plum fruit. Postharvest Biology and Technology, 83, 54–57.

    Article  CAS  Google Scholar 

  • Gupta, N., Jawandha, S. K., & Gill, P. S. (2011). Effect of calcium on cold storage and post-storage quality of peach. Journal of Food Science and Technology, 48(2), 225–229.

    Article  PubMed  CAS  Google Scholar 

  • Han, T., Wang, Y., Li, L., & Ge, X. (2003). Effect of exogenous salicylic acid on postharvest physiology of peaches. Acta Horticulturae, 628, 383–389.

    Google Scholar 

  • Harker, F.R., Redgwell, R.J., Hallett, I.C., Murray, S.H. & Carter, G. (1997). Texture of fresh fruit. Horticultural Reviews, 20: 121–224.

    Google Scholar 

  • Hayama, H., Tatsuki, M., & Nakamura, Y. (2008). Combined treatment of aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) reduces melting-flesh peach fruit softening. Postharvest Biology and Technology, 50, 228–230.

    Article  CAS  Google Scholar 

  • Hazrati, S., Kashkooli, A. B., Habibzadeh, F., Tahmasebi-Sarvestani, Z., & Sadeghi, A. R. (2017). Evaluation of Aloe vera gel as an alternative edible coating for peach fruits during cold storage period. Gesunde Pflanzen, 69, 131–137.

    Article  CAS  Google Scholar 

  • Herrero-Langreo, A., Fernández-Ahumada, E., Roger, J. M., Palagós, B., & Lleó, L. (2012). Combination of optical and non-destructive mechanical techniques for the measurement of maturity in peach. Journal of Food Engineering, 108(1), 150–157.

    Article  Google Scholar 

  • Hong, C. X., Holtz, B. A., Morgan, D. P., & Michailides, T. J. (1997). Significance of thinned fruit as a source of the secondary inoculum of Monilinia fructicola in California nectarine orchards. Plant Disease, 81(5), 519–524.

    Article  Google Scholar 

  • Hossein-Farahi, M., Kohvare, M. M., Rezaee, T., Alahdadi, F., & Bagheri, F. (2016). The influence of chitosan edible coatings and calcium treatments on quality indices of peach fruit cv. ‘Alberta’ during cold storage. Agricultural Communications, 4(2), 7–13.

    Google Scholar 

  • Huan, C., Jiang, L., An, X., Yu, M., Xu, Y., Ma, R., & Yu, Z. (2016). Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiology and Biochemistry, 104, 294–303.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, P. R., Meena, R. S., Dar, M. A., & Wani, A. M. (2008). Studies on enhancing the keeping quality of peach (Prunus persica Bausch) cv. Elberta by gamma-irradiation. Radiation Physics and Chemistry, 77, 473–481.

    Article  CAS  Google Scholar 

  • Hussain, P. R., Suradkar, P. P., Wani, A. M., & Dar, M. A. (2016). Potential of carboxymethyl cellulose and γ-irradiation to maintain quality and control disease of peach fruit. International Journal of Biological Macromolecules, 82, 114–126.

    Article  PubMed  CAS  Google Scholar 

  • Infante, R., Meneses, C., & Predieri, S. (2008). Sensory quality performance of two nectarine flesh typologies exposed to distant market conditions. Journal of Food Quality, 31(4), 526–535.

    Article  Google Scholar 

  • Infante, R., Contador, L., Rubio, P., Mesa, K., & Meneses, C. (2011). Non-destructive monitoring of flesh softening in the black-skinned Japanese plums ‘Angeleno’ and ‘Autumn beaut’ on-tree and postharvest. Postharvest Biology and Technology, 61(1), 35–40.

    Article  Google Scholar 

  • Infante, R., Aros, D., Contador, L., & Rubio, P. (2012). Does the maturity at harvest affect quality and sensory attributes of peaches and nectarines? New Zealand Journal of Crop and Horticultural Science, 40(2), 103–113.

    Article  CAS  Google Scholar 

  • Iordănescu, O. A., Alexa, E., Radulov, I., Costea, A., Dobrei, A., & Dobrei, A. (2015). Minerals and amino acids in peach (Prunus persica L.) cultivars and hybrids belonging to world germoplasm collection in the conditions of West Romania. Agriculture and Agricultural Science Procedia, 6, 145–150.

    Article  Google Scholar 

  • Jemric, T., Ivic, D., Fruk, G., Matijas, H. S., Cvjetkovic, B., Bupic, M., & Pavkovic, B. (2011). Reduction of postharvest decay of peach and nectarine caused by Monilinia laxa using hot water dipping. Food and Bioprocess Technology, 4(1), 149–154.

    Article  Google Scholar 

  • Jin, P., Wang, K., Shang, H., Tong, J., & Zheng, Y. (2009a). Low-temperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit. Journal of the Science of Food and Agriculture, 89(10), 1690–1696.

    Article  CAS  Google Scholar 

  • Jin, P., Zheng, Y., Tang, S., Rui, H., & Wang, C. Y. (2009b). A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biology and Technology, 52, 24–29.

    Article  CAS  Google Scholar 

  • Jin, P., Shang, H., Chen, J., Zhu, H., Zhao, Y., & Zheng, Y. (2011). Effect of 1-methylcyclopropene on chilling injury and quality of peach fruit during cold storage. Journal of Food Science, 76(8), 485–491.

    Article  CAS  Google Scholar 

  • Jin, P., Zhu, H., Wang, L., Shan, T., & Zheng, Y. (2014). Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents. Food Chemistry, 161, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Kader, A.A. (2001). Postharvest technology of horticultural crops. University of California, special publication 3311.

    Google Scholar 

  • Kang, G. Z., Wang, Z. X., & Sun, G. C. (2003). Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Botanica Sinica, 45, 567–573.

    CAS  Google Scholar 

  • Karabulut, O. A., Gabler, F. M., Mansour, M., & Smilanick, J. L. (2004). Postharvest ethanol and hot water treatments of table grapes to control gray mold. Postharvest Biology and Technology, 34(2), 169–177.

    Article  CAS  Google Scholar 

  • Kim, K. H., Kim, M. S., Kim, H. G., & Yook, H. S. (2010). Inactivation of contaminated fungi and antioxidant effects of peach (Prunus persica L. Batsch cv Dangeumdo) by 0.5–2 kGy gamma irradiation. Radiation Physics and Chemistry, 79(4), 495–501.

    Article  CAS  Google Scholar 

  • Kondo, S., Yamada, H., & Setha, S. (2007). Effects of jasmonates differed at fruit ripening stages on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression in pears. Journal of the American Society for Horticultural Science, 132, 120–125.

    CAS  Google Scholar 

  • Liang, Y., Strelkov, S. E., & Kav, N. H. (2009). Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 9, 3156–3173.

    Article  PubMed  CAS  Google Scholar 

  • Liguori, G., Weksler, A., Zutahi, Y., Lurie, S., & Kosto, I. (2004). Effect of 1-methylcyclopropene on ripening of melting flesh peaches and nectarines. Postharvest Biology and Technology, 31, 263–268.

    Article  CAS  Google Scholar 

  • Liu, H., Jiang, W., Zhou, L., Wang, B., & Luo, Y. (2005). The effects of 1-methylcyclopropene on peach fruit (Prunus persica L. cv. Jiubao) ripening and disease resistance. International Journal of Food Science and Technology, 40(1), 1–7.

    Article  CAS  Google Scholar 

  • Liu, H., Cao, J., & Jiang, W. (2015). Changes in phenolics and antioxidant property of peach fruit during ripening and responses to 1-methylcyclopropene. Postharvest Biology and Technology, 108, 111–118.

    Article  CAS  Google Scholar 

  • Liu, H., Jiang, W., Cao, J., & Ma, L. (2018). A combination of 1-methylcyclopropene treatment and intermittent warming alleviates chilling injury and affects phenolics and antioxidant activity of peach fruit during storage. Scientia Horticulturae, 229, 175–181.

    Article  CAS  Google Scholar 

  • Llácer, G., Alonso, J. M., Rubio, M. J., Batlle, I., Iglesias, I., Vargas, F. J., García-Brunton, J., & Badenes, M. L. (2009). Situación del material vegetal de melocotonero utilizado en España. ITEA, 195(1), 67–83.

    Google Scholar 

  • Lurie, S., & Crisosto, C. H. (2005). Chilling injury in peach and nectarine. Postharvest Biology and Technology, 37(3), 195–208.

    Article  Google Scholar 

  • Lurie, S., Vanoli, M., Dagar, A., Weksler, A., Lovati, F., Eccher Zerbini, P., Spinelli, L., Torricelli, A., Feng, J., & Rizzolo, A. (2011). Chilling injury in stored nectarines and its detection by time-resolved reflectance spectroscopy. Postharvest Biology and Technology, 59(3), 211–218.

    Article  Google Scholar 

  • Lurie, S., Friedman, H., Weksler, A., Dagar, A., & Zerbini, P. E. (2013). Maturity assessment at harvest and prediction of softening in an early and late season melting peach. Postharvest Biology and Technology, 76, 10–16.

    Article  Google Scholar 

  • Malakou, A., & Nanos, G. D. (2005). A combination of hot water treatment and modified atmosphere packaging maintains quality of advanced maturity ‘Caldesi 2000’ nectarines and ‘Royal Glory’ peaches. Postharvest Biology and Technology, 38, 106–114.

    Article  Google Scholar 

  • Manjunatha, G., Lokesh, V., & Neelwarne, B. (2010). Nitric oxide in fruit ripening: Trends and opportunities. Biotechnology Advances, 28, 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Mari, M., Leoni, O., Bernardi, R., Neri, F., & Palmieri, S. (2008). Control of brown rot on stone fruit by synthetic and glucosinolate-derived isothiocyanates. Postharvest Biology and Technology, 47(1), 61–67.

    Article  CAS  Google Scholar 

  • Matteoli, S., Diani, M., Massai, R., Corsini, G., & Remorini, D. (2015). A spectroscopy-based approach for automated nondestructive maturity grading of peach fruits. IEEE Sensors Journal, 15(10), 5455–5464.

    Article  CAS  Google Scholar 

  • McDonald, H., McCulloch, M., Caporaso, F., Winborne, I., Oubichon, M., Rakovski, C., & Prakash, A. (2012). Commercial scale irradiation for insect disinfestation preserves peach quality. Radiation Physics and Chemistry, 81(6), 697–704.

    Article  CAS  Google Scholar 

  • Meng, X., Han, J., Wang, Q., & Tian, S. (2009). Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress. Food Chemistry, 114, 1028–1035.

    Article  CAS  Google Scholar 

  • Muhua, L., Peng, F., & Renfa, C. (2007). Non-destructive estimation peach SSC and firmness by multispectral reflectance imaging. New Zealand Journal of Agricultural Research, 50(5), 601–608.

    Article  Google Scholar 

  • Nascimento, P. A. M., de Carvalho, L. C., Júnior, L. C. C., Pereira, F. M. V., & de Almeida Teixeira, G. H. (2016). Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR). Postharvest Biology and Technology, 111, 345–351.

    Article  CAS  Google Scholar 

  • Northover, J., & Zhou, T. (2002). Control of Rhizopus rot of peaches with treatments of tebuconazole, fludioxonil, and pseudomonas syringae. Canadian Journal of Plant Pathology, 24(2), 144–153.

    Article  CAS  Google Scholar 

  • Nunes, C. A. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133, 181–196.

    Article  Google Scholar 

  • Ogawa, J. M., Zehr, E. I., Bird, G. W., Ritchie, D. F., Rriu, K., & Uyemoto, J. K. (1995). Compendium of stone fruit diseases (p. 98). St. Paul: APS.

    Google Scholar 

  • Oliveira, M., Abadias, M., Usall, J., Torres, R., Teixido, N., & Vinas, I. (2015). Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables–A review. Trends in Food Science & Technology, 46(1), 13–26.

    Article  CAS  Google Scholar 

  • Orr, G., & Brady, C. (1993). Relationship of endopolygalacturonase activity to fruit softening in a freestone peach. Postharvest Biology and Technology, 3(2), 121–130.

    Article  CAS  Google Scholar 

  • Pandey, V. P., Singh, S., Jaiswal, N., Awasthi, M., Pandey, B., & Dwivedi, U. N. (2013). Papaya fruit ripening: ROS metabolism, gene cloning, characterization and molecular docking of peroxidase. Journal of Molecular Catalysis B: Enzymatic, 98, 98–105.

    Article  CAS  Google Scholar 

  • Parveen, S., Wani, A. H., Bhat, M. Y., Koka, J. A., & Wani, F. A. (2016). Management of postharvest fungal rot of peach (Prunus persica) caused by Rhizopus stolonifer in Kashmir Valley, India. Plant Pathology and Quarantine, 6(1), 19–29.

    Article  Google Scholar 

  • Perazzolli, M., Romero-Puertas, M. C., & Delledonne, M. (2006). Modulation of nitric oxide bioactivity by plant haemoglobins. Journal of Experimental Botany, 57, 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Pongener, A., Mahajan, B. V. C., & Singh, H. (2011). Effect of different packaging films on storage life and quality of peach fruits under cold storage conditions. Indian Journal of Horticulture, 68(2), 240–245.

    Google Scholar 

  • Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena–an overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Proteggente, A. R., Pannala, A. S., Paganga, G., Van Buren, L., Wagner, E., Wiseman, S., Van de Put, F., Dacombe, C., & Rice-Evans, C. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 36(2), 217–233.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, M. U., Sajid, M., Rab, A., Ali, S., Shahid, M. O., Alam, A., Muhammad Israr, M., & Irshad Ahmad, I. (2016). Impact of calcium chloride concentrations and storage duration on quality attributes of peach (Prunus persica). Russian Agricultural Sciences, 42(2), 130–136.

    Article  Google Scholar 

  • Razavi, F., & Hajilou, J. (2016). Enhancement of postharvest nutritional quality and antioxidant capacity of peach fruits by preharvest oxalic acid treatment. Scientia Horticulturae, 200, 95–101.

    Article  CAS  Google Scholar 

  • Reiter, R. J., Tan, D. X., Zhou, Z., Cruz, M. H. C., Fuentes-Broto, L., & Galano, A. (2015). Phytomelatonin: Assisting plants to survive and thrive. Molecules, 20, 7396–7437.

    Article  PubMed  CAS  Google Scholar 

  • Remorini, D., Tavarini, S., Degl’Innocenti, E., Loreti, F., Massai, R., & Guidi, L. (2008). Effect of rootstocks and harvesting time on the nutritional quality of peel and flesh of peach fruits. Food Chemistry, 110(2), 361–367.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo, M. J., & Zacarias, L. (2007). Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biology and Technology, 43(1), 14–22.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Tapia, M. S., & Martín-Belloso, O. (2008). Using polysaccharide based edible coatings to maintain quality of fresh cut Fuji apples. LWT – Food Science and Technology, 41, 139–147.

    Article  CAS  Google Scholar 

  • Ruiz, K. B., Bressanin, D., Ziosi, V., Costa, G., & Torrigiani, P. (2010). Early jasmonate application interferes with peach fruit development and ripening as revealed by several differentially expressed seed and mesocarp genes. Acta Horticulturae, 884, 101–106.

    Article  CAS  Google Scholar 

  • Ruoyi, K., Zhifang, Y., & Zhaoxin, L. (2005). Effect of coating and intermittent warming on enzymes, soluble pectin substances and ascorbic acid of Prunus persica (cv. Zhonghuashoutao) during refrigerated storage. Food Research International, 38(3), 331–336.

    Article  CAS  Google Scholar 

  • Ruperti, B., Bonghi, C., Tonutti, P., & Ramina, A. (1998). Ethylene biosynthesis in peach fruitlet abscission. Plant, Cell & Environment, 21, 731–737.

    Article  CAS  Google Scholar 

  • Ruperti, B., Bonghi, C., Rasori, A., Ramina, A., & Tonutti, P. (2001). Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiologia Plantarum, 111, 336–344.

    Article  PubMed  CAS  Google Scholar 

  • Ruperti, B., Cattivelli, L., Pagni, S., & Ramina, A. (2002). Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica). Journal of Experimental Botany, 53(368), 429–437.

    Article  PubMed  CAS  Google Scholar 

  • Salem, E. A., Youssef, K., & Sanzani, S. M. (2016). Evaluation of alternative means to control postharvest Rhizopus rot of peaches. Scientia Horticulturae, 198, 86–90.

    Article  CAS  Google Scholar 

  • Sasaki, F. F., Cerqueira, T. S., Sestari, I., & Kluge, J. S. A. R. A. (2010). Woolliness control and pectin solubilization of ‘Douradão’ peach after heat shock treatment. Acta Horticulturae, 877, 539–542.

    Article  Google Scholar 

  • Sayyari, M., Valero, D., Babalar, M., Kalantari, S., Zapata, P. J., & Serrano, M. (2010). Prestorage oxalic acid treatment maintained visual quality, bioactive compounds, and antioxidant potential of pomegranate after longterm storage at 2°C. Journal of Agricultural and Food Chemistry, 58, 6804–6808.

    Article  PubMed  CAS  Google Scholar 

  • Shinya, P., Contador, L., Predieri, S., Rubio, P., & Infante, R. (2013). Peach ripening: Segregation at harvest and postharvest flesh softening. Postharvest Biology and Technology, 86, 472–478.

    Article  Google Scholar 

  • Siddiqui, M. W., & Dhua, R. S. (2010). Eating artificially ripened fruits is harmful. Current Science, 99(12), 1664–1668.

    CAS  Google Scholar 

  • Singh, S. P., Singh, Z., & Swinny, E. E. (2009). Postharvest nitric oxide fumigation delays fruit ripening and alleviates chilling injury during cold storage of Japanese plums (Prunus salicina Lindell). Postharvest Biology and Technology, 53, 101–108.

    Article  CAS  Google Scholar 

  • Spadoni, A., Guidarelli, M., Sanzani, S. M., Ippolito, A., & Mari, M. (2014). Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress. Postharvest Biology and Technology, 94, 66–73.

    Article  CAS  Google Scholar 

  • Spadoni, A., Cameldi, I., Noferini, M., Bonora, E., Costa, G., & Mari, M. (2016). An innovative use of DA-meter for peach fruit postharvest management. Scientia Horticulturae, 201, 140–144.

    Article  CAS  Google Scholar 

  • Steiner, A., Abreu, M., Correia, L., Beirão-da-Costa, S., Leitão, E., Beirão-da-Costa, M. L., Empis, J., & Moldão-Martins, M. (2006). Metabolic response to combined mild heat pre-treatments and modified atmosphere packaging on fresh-cut peach. European Food Research and Technology, 222, 217–222.

    Article  CAS  Google Scholar 

  • Tan, D. X. (2015). Melatonin and plants. Journal of Experimental Botany, 66, 625–625.

    Article  PubMed Central  CAS  Google Scholar 

  • Tareen, M. J., Abbasi, N. A., & Hafiz, I. A. (2012). Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. ‘Flordaking’ fruit during storage. Scientia Horticulturae, 142, 221–228.

    Article  CAS  Google Scholar 

  • Tian, S., Qin, G., & Li, B. (2013). Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Molecular Biology, 82(6), 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Tomás-Barberán, F. A., Gil, M. I., Cremin, P., Waterhouse, A. L., Hess-Pierce, B., & Kader, A. A. (2001). HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. Journal of Agricultural and Food Chemistry, 49(10), 4748–4760.

    Article  PubMed  CAS  Google Scholar 

  • Tonutti, P., Bonghi, C., Ruperti, B., Tornielli, G. B., & Ramina, A. (1997). Ethylene evolution and 1-aminocyclopropane-1-carboxylate oxidase gene expression during early development and ripening of peach fruit. Journal of the American Society for Horticultural Science, 122(5), 642–647.

    CAS  Google Scholar 

  • Trainotti, L., Bonghi, C., Ziliotto, F., Zanin, D., Rasori, A., Casadoro, G., Ramina, A., & Tonutti, P. (2006). The use of microarray μPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Science, 170(3), 606–613.

    Article  CAS  Google Scholar 

  • USDA: United States Department of Agriculture. (2017). Fresh peaches and cherries: World markets and trade. https://apps.fas.usda.gov/psdonline/circulars/StoneFruit.pdf

  • Villarino, M., Sandin-España, P., Melgarejo, P., & De Cal, A. (2011). High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis. Journal of Agricultural and Food Chemistry, 59(7), 3205–3213.

    Article  PubMed  CAS  Google Scholar 

  • Vizzotto, G., Pinton, R., Varanini, Z., & Costa, G. (1996). Sucrose accumulation in developing peach fruit. Physiologia Plantarum, 96(2), 225–230.

    Article  CAS  Google Scholar 

  • Wakabayashi, K. (2000). Changes in cell wall polysaccharides during fruit ripening. Journal of Plant Research, 113(3), 231–237.

    Article  CAS  Google Scholar 

  • Wang, L., Chen, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41, 244–251.

    Article  CAS  Google Scholar 

  • Wasternack, C. (2007). Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100(4), 681–697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watkins, C. B. (2006). The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnology Advances, 24(4), 389–409.

    Article  PubMed  CAS  Google Scholar 

  • Wu, F., Zhang, D., Zhang, H., Jiang, G., Su, X., Qu, H., Jiang, Y., & Duan, X. (2011). Physiological and biochemical response of harvested plum fruit to oxalic acid during ripening or shelf-life. Food Research International, 44(5), 1299–1305.

    Article  CAS  Google Scholar 

  • Xi, W. P., Zhang, B., Shen, J. Y., Sun, C. D., Xu, C. J., & Chen, K. S. (2012). Intermittent warming alleviated the loss of peach fruit aroma-related esters by regulation of AAT during cold storage. Postharvest Biology and Technology, 74, 42–48.

    Article  CAS  Google Scholar 

  • Yang, H. S., Feng, G. P., An, H. J., & Li, Y. F. (2006). Microstructure changes of sodium carbonate-soluble pectin of peach by AFM during controlled atmosphere storage. Food Chemistry, 94(2), 179–192.

    Article  CAS  Google Scholar 

  • Yu, L., Liu, H., Shao, X., Yu, F., Wei, Y., Ni, Z., Xu, F., & Wang, H. (2016). Effects of hot air and methyl jasmonate treatment on the metabolism of soluble sugars in peach fruit during cold storage. Postharvest Biology and Technology, 113, 8–16.

    Article  CAS  Google Scholar 

  • Zanon, L., Falchi, R., Santi, R., & Vizzotto, G. (2015). Sucrose transport and phloem unloading in peach fruit: Potential role of two transporters localized in different cell types. Physiologia Plantarum, 154(2), 179–193.

    Article  PubMed  CAS  Google Scholar 

  • Zerbini, P. E., Vanoli, M., Grassia, M., Rizzolo, A., Fibiani, M., Cubeddu, R., Pifferi, A., Spinelli, L., & Torricelli. (2006). A model for the softening of nectarines based on sorting fruit at harvest by time-resolved reflectance spectroscopy. Postharvest Biology and Technology, 39(3), 223–232.

    Article  Google Scholar 

  • Zhang, L.-l., Zhu, S.-h., Chen, C.-b., & Zhou, J. (2011). Metabolism of endogenous nitric oxide during growth and development of apple fruit. Scientia Horticulturae, 127, 500–506.

    Article  CAS  Google Scholar 

  • Zhang, B. B., Guo, J. Y., Ma, R. J., Cai, Z. X., Yan, J., & Zhang, C. H. (2015). Relationship between the bagging microenvironment and fruit quality in ‘Guibao’ peach [Prunus persica (L.) Batsch]. The Journal of Horticultural Science and Biotechnology, 90(3), 303–310.

    Article  Google Scholar 

  • Zhang, B., Peng, B., Zhang, C., Song, Z., & Ma, R. (2017). Determination of fruit maturity and its prediction model based on the pericarp index of absorbance difference (IAD) for peaches. PLoS One, 12(5), e0177511. https://doi.org/10.1371/journal.pone.0177511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, H. W., Dong, L., Ben-Arie, R., & Lurie, S. (2001). The role of ethylene in the prevention of chilling injury in nectarines. Journal of Plant Physiology, 158(1), 55–61.

    Article  CAS  Google Scholar 

  • Zhou, T., Schneider, K. E., & Li, X. Z. (2008). Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. International Journal of Food Microbiology, 126, 180–185.

    Article  PubMed  Google Scholar 

  • Zhou, X., Dong, L., Zhou, Q., Wang, J. W., Chang, N., Liu, Z. Y., & Ji, S. J. (2015). Effects of intermittent warming on aroma-related esters of 1-methylcyclopropene-treated ‘Nanguo’ pears during ripening at room temperature. Scientia Horticulturae, 185(30), 82–89.

    Article  CAS  Google Scholar 

  • Zhu, S., Liu, M., & Zhou, J. (2006). Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage. Postharvest Biology and Technology, 42, 41–48.

    Article  CAS  Google Scholar 

  • Zhu, S., Sun, L., & Zhou, J. (2009). Effects of nitric oxide fumigation on phenolic metabolism of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao) in relation to fruit quality. LWT Food Science and Technology, 42, 1009–1014.

    Article  CAS  Google Scholar 

  • Zhu, L., Zhou, J., & Zhu, S. (2010). Effect of a combination of nitric oxide treatment and intermittent warming on prevention of chilling injury of ‘Feicheng’ peach fruit during storage. Food Chemistry, 121(1), 165–170.

    Article  CAS  Google Scholar 

  • Ziosi, V., Noferini, M., Fiori, G., Tadiello, A., Trainotti, L., Casadoro, G., & Costa, G. (2008). A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biology and Technology, 49(3), 319–329.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farooq, S., Mir, M.M., Ganai, S.A., Maqbool, T., Mir, S.A., Shah, M.A. (2018). Postharvest Biology and Technology of Peach. In: Mir, S., Shah, M., Mir, M. (eds) Postharvest Biology and Technology of Temperate Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-76843-4_7

Download citation

Publish with us

Policies and ethics