Skip to main content

Simultaneous Finite Element Computation of Direct and Diffracted Flow Noise in Domains with Static and Moving Walls

  • Conference paper
  • First Online:
  • 747 Accesses

Abstract

Curle’s acoustic analogy allows one to compute aerodynamic noise due to flow motion in the presence of rigid bodies. However, the strength of the dipolar term in the analogy depends on the values of the total flow pressure on the body’s surface. At low Mach numbers, that pressure cannot be obtained from the computational fluid dynamics (CFD) simulation of an incompressible flow, because the acoustic component cannot be captured. To circumvent this problem, and still being able to separate the flow and body noise contributions at a far-field point, an alternative approach was recently proposed which does not rely on an integral formulation. Rather, the acoustic pressure is split into incident and diffracted components giving rise to two differential acoustic problems that are solved together with the flow dynamics, in a single finite element computational run. In this work, we will revisit the acoustics of that approach and show how it can be extended to predict the flow noise generated in domains with moving walls.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Badia, S., Codina, R., Espinoza, H.: Stability, convergence and accuracy of stabilized finite elements methods for the wave equation in mixed form. SIAM J. Numer. Anal. 52, 1729–1752 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bailly, C., Bogey, C.: Contributions of computational aeroacoustics to jet noise research and prediction. Int. J. Comput. Fluid Dyn. 18(6), 481–491 (2004)

    Article  Google Scholar 

  3. Bailly, C., Bogey, C., Gloerfelt, X.: Some useful hybrid approaches for predicting aerodynamic noise. Comptes Rendus Mécanique 333(9), 666–675 (2005)

    Article  Google Scholar 

  4. Bogey, C., Bailly, C., Juvé, D.: Numerical simulation of sound generated by vortex pairing in a mixing layer. AIAA J. 38(12), 2210–2218 (2000)

    Article  Google Scholar 

  5. Chiandussi, G., Bugeda, G., Oñate, E.: A simple method for automatic update of finite element meshes. Int. J. Numer. Method. Biomed. Eng. 16(1), 1–19 (2000)

    MATH  Google Scholar 

  6. Codina, R.: Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Eng. 191, 4295–4321 (2002)

    Article  MathSciNet  Google Scholar 

  7. Codina, R.: Finite element approximation of the hyperbolic wave equation in mixed form. Comput. Methods Appl. Mech. Eng. 197(13–16), 1305–1322 (2008)

    Article  MathSciNet  Google Scholar 

  8. Codina, R., González-Ondina, J., Díaz-Hernández, G., Principe, J.: Finite element approximation of the modified Boussinesq equations using a stabilized formulation. Int. J. Numer. Meth. Fluids 57(9), 1249–1268 (2008)

    Article  MathSciNet  Google Scholar 

  9. Codina, R., Principe, J., Guasch, O., Badia, S.: Time dependent subscsales in the stabilized finite element approximation of incompressible flow problems. Comput. Methods Appl. Mech. Eng. 196(21–24), 2413–2430 (2007)

    Article  Google Scholar 

  10. Crighton, D.: Basic principles of aerodynamic noise generation. Prog. Aerospace Sci. 16(1), 31–96 (1975)

    Article  Google Scholar 

  11. Crighton, D., Dowling, A., Ffowcs Williams, J., Heckl, M., Leppington, F.: Modern Methods in Analytical Acoustics-Lecture Notes. Springer-Verlag (1992)

    Chapter  Google Scholar 

  12. Curle, N.: The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 231(1187), 505–514 (1955)

    Article  MathSciNet  Google Scholar 

  13. Doak, P.: Acoustic radiation from a turbulent fluid containing foreign bodies. Proc. R. Soc. Lond. A 254(1276), 129–146 (1960)

    Article  MathSciNet  Google Scholar 

  14. Espinoza, H., Codina, R., Badia, S.: A Sommerfeld non-reflecting boundary condition for the wave equation in mixed form. Comput. Methods Appl. Mech. Eng. 276, 122–148 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188(2), 365–398 (2003)

    Article  MathSciNet  Google Scholar 

  16. Fujiso, Y., Nozaki, K., Van Hirtum, A.: Towards sibilant physical speech screening using oral tract volume reconstruction: some preliminary observations. Appl. Acoust. 96, 101–107 (2015)

    Article  Google Scholar 

  17. Gloerfelt, X., Pérot, F., Bailly, C., Juvé, D.: Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers. J. Sound Vib. 287(1), 129–151 (2005)

    Article  Google Scholar 

  18. Guasch, O., Arnela, M., Codina, R., Espinoza, H.: A stabilized finite element method for the mixed wave equation in an ALE framework with application to diphthong production. Acta Acust. United Acust. 102(1), 94–106 (2016)

    Article  Google Scholar 

  19. Guasch, O., Codina, R.: An algebraic subgrid scale finite element method for the convected Helmholtz equation in two dimensions with applications in aeroacoustics. Comput. Methods Appl. Mech. Eng. 196(45–48), 4672–4689 (2007)

    Article  MathSciNet  Google Scholar 

  20. Guasch, O., Codina, R.: Computational aeroacoustics of viscous low speed flows using subgrid scale finite element methods. J. Comput. Acoust. 17(3), 309–330 (2009)

    Article  MathSciNet  Google Scholar 

  21. Guasch, O., Pont, A., Baiges, J., Codina, R.: Concurrent finite element simulation of quadrupolar and dipolar flow noise in low Mach number aeroacoustics. Comput. Fluids 133, 129–139 (2016)

    Article  MathSciNet  Google Scholar 

  22. Guasch, O., Sánchez-Martín, P., Pont, A., Baiges, J., Codina, R.: Residual-based stabilization of the finite element approximation to the acoustic perturbation equations for low Mach number aeroacoustics. Int. J. Numer. Meth. Fluids 82(12), 839–857 (2016)

    Article  MathSciNet  Google Scholar 

  23. Hueppe, A., Kaltenbacher, M.: Spectral finite elements for computational aeroacoustics using acoustic perturbation equations. J. Comput. Acoust. 20 (2), 1240005 (2012)

    Google Scholar 

  24. Huerta, A., Liu, W.: Viscous flow with large free surface motion. Comput. Methods Appl. Mech. Eng. 69, 277–324 (1988)

    Article  Google Scholar 

  25. Hughes, T.: Multiscale phenomena: Green’s function, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  Google Scholar 

  26. Hughes, T., Feijo, G., Mazzei, L., Quincy, J.: The variational multiscale method, a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)

    Article  MathSciNet  Google Scholar 

  27. Hughes, T., Liu, W., Zimmermann, T.: Lagrangian-eulerian finite-element formulation for compressible viscous flows. Comput. Methods Appl. Mech. Eng. 29, 329–349 (1981)

    Article  Google Scholar 

  28. Kaltenbacher, M., Escobar, M., Becker, S., Ali, I.: Numerical simulation of flow-induced noise using LES/SAS and lighthill’s acoustic analogy. Int. J. Numer. Meth. Fluids 63(9), 1103–1122 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 211 (1107), 564–587 (1952)

    Article  MathSciNet  Google Scholar 

  30. Morse, P.M., Ingard, K.U.: Theoretical Acoustics. McGraw-Hill, New York (1968)

    Google Scholar 

  31. Oberai, A.A., Roknaldin, F.R., Hughes, T.J.: Computation of trailing-edge noise due to turbulent flow over an airfoil. AIAA J. 40(11), 2206–2216 (2002)

    Article  Google Scholar 

  32. Pont, A., Codina, R., Baiges, J.: Interpolation with restrictions between finite element meshes for flow problems in an ALE setting. Int. J. Numer. Meth. Eng. 110(13), 1203–1226 (2017)

    Article  MathSciNet  Google Scholar 

  33. Pont, A., Guasch, O., Baiges, J., Codina, R., Van Hirtum, A.: Computational aeroacoustics to identify sound sources in the generation of sibilant /s/. Submitted (2017)

    Google Scholar 

  34. Roger, M.: Aeroacoustics: some theoretical background–The acoustic analogy, Anthoine, J., Colonius, T. (Eds.), vol. LS 2006-05. Von Karman Institute, Rhode-St-Genese (2006)

    Google Scholar 

  35. Van Hirtum, A., Fujiso, Y., Nozaki, K.: The role of initial flow conditions for sibilant fricative production. J. Acoust. Soc. Am. 136(6), 2922–2925 (2014)

    Article  Google Scholar 

  36. Williams, J.F., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. Roy. Soc. A 264(1151), 321–342 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Guasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guasch, O., Pont, A., Baiges, J., Codina, R. (2019). Simultaneous Finite Element Computation of Direct and Diffracted Flow Noise in Domains with Static and Moving Walls. In: Ciappi, E., et al. Flinovia—Flow Induced Noise and Vibration Issues and Aspects-II. FLINOVIA 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-76780-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76780-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76779-6

  • Online ISBN: 978-3-319-76780-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics