Skip to main content

Annelida: Hirudinea (Leeches): Heterogeneity in Leech Immune Responses

  • Chapter
  • First Online:
Advances in Comparative Immunology

Abstract

This chapter provides a comprehensive picture of some of the most significant information on the type of cells and mechanisms involved in the regulation of the inflammation, immune response, and tissue regeneration processes in the medicinal leech. This annelid represents a useful experimental model for investigating the immune system, being cost effective, easily manipulable, and devoid of significant ethical considerations and regulatory restrictions in relation to its use. Moreover, this invertebrate model shows an innate immune response and a wound healing process characterized by the same responses as observed in vertebrates, involving the same cellular mechanisms and also the same types of molecules—as specific growth factors—playing a pivotal role in guiding, controlling, and regulating the angiogenesis and innate immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquati F, Bertilaccio S, Grimaldi A, Monti L, Cinquetti R, Bonetti P, Lualdi M, Vidalino L, Fabbri M, Sacco MG, van Rooijen N, Campomenosi P, Vigetti D, Passi A, Riva C, Capella C, Sanvito F, Doglioni C, Gribaldo L, Macchi P, Sica A, Noonan DM, Ghia P, Taramelli R (2011) Microenvironmental control of malignancy exerted by RNASET2, a widely conserved extracellular RNase. Proc Natl Acad Sci U S A 108:1104–1109. https://doi.org/10.1073/pnas.1013746108

    Article  PubMed  Google Scholar 

  • Acquati F, Lualdi M, Bertilaccio S, Monti L, Turconi G, Fabbri M, Grimaldi A, Anselmo A, Inforzato A, Collotta A, Cimetti L, Riva C, Gribaldo L, Ghia P, Taramelli R (2013) Loss of function of ribonuclease T2, an ancient and phylogenetically conserved RNase, plays a crucial role in ovarian tumorigenesis. Proc Natl Acad Sci U S A 110:8140–8145. https://doi.org/10.1073/pnas.1222079110

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali D, Ahmed M, Alarifia S, Ali H (2014) Ecotoxicity of single-wall carbon nanotubes to freshwater snail Lymnaea luteola L.: impacts on oxidative stress and genotoxicity. Environ Toxicol 30:674–682. https://doi.org/10.1002/tox.21945

    Article  CAS  PubMed  Google Scholar 

  • Alkassab F, Gourh P, Tan FK, McNearney T, Fischbach M, Ahn C, Arnett FC, Mayes MD (2007) An allograft inflammatory factor 1 (AIF1) single nucleotide polymorphism (SNP) is associated with anticentromere antibody positive systemic sclerosis. Rheumatology 46:1248–1251. https://doi.org/10.1093/rheumatology/kem057

    Article  CAS  PubMed  Google Scholar 

  • Arnaout MA (1990) Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75:1037–1050

    Google Scholar 

  • Autieri MV, Carbone C, Mu A (2000) Expression of allograft inflammatory factor-1 is a marker of activated human vascular smooth muscle cells and arterial injury. Arterioscler Thromb Vasc Biol 20:1737–1744

    Article  CAS  Google Scholar 

  • Baranzini N, Pedrini E, Girardello R, Tettamanti G, de Eguileor M, Taramelli R, Acquati F, Grimaldi A (2017) Human recombinant RNASET2-induced inflammatory response and connective tissue remodeling in the medicinal leech. Cell Tissue Res 368:337–351. https://doi.org/10.1007/s00441-016-2557-9

    Article  CAS  PubMed  Google Scholar 

  • Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379–387. https://doi.org/10.1016/j.aquatox.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Blanco GA, Escalada AM, Alvarez E, Hajos S (1997) LPS-induced stimulation of phagocytosis in the sipunculan worm Themiste petricola: possible involvement of human CD14, CD11B and CD11C cross-reactive molecules. Dev Comp Immunol 21:349–362

    Article  CAS  Google Scholar 

  • Cabañas C, Sánchez-Madrid F (1999) CD11c (leukocyte integrin CR4 alpha subunit). J Biol Regul Homeost Agents 13:134–136

    PubMed  Google Scholar 

  • Carpenter G (2000) The EGF receptor: a nexus for trafficking and signaling. BioEssays 22:697–707. https://doi.org/10.1002/1521-1878(200008)22:8<697::AID-BIES3>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  • Chargé SBP, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238. https://doi.org/10.1152/physrev.00019.2003

    Article  PubMed  Google Scholar 

  • Cossarizza A, Cooper EL, Suzuki MM, Salvioli S, Capri M, Gri G, Quaglino D, Franceschi C (1996) Earthworm leukocytes that are not phagocytic and cross-react with several human epitopes can kill human tumor cell lines. Exp Cell Res 224:174–182. https://doi.org/10.1006/excr.1996.0125

    Article  CAS  PubMed  Google Scholar 

  • Cossu G, Biressi S (2005) Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration. Semin Cell Dev Biol 16:623–631. https://doi.org/10.1016/j.semcdb.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  • Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342. https://doi.org/10.1016/S1471-4906(01)01930-5

    Article  CAS  PubMed  Google Scholar 

  • Damert A, Miquerol L, Gertsenstein M, Risau W, Nagy A (2002) Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 129:1881–1892

    CAS  PubMed  Google Scholar 

  • de Eguileor M, Tettamanti G, Grimaldi A, Boselli A, Scarì G, Valvassori R, Cooper EL, Lanzavecchia G (1999) Histopathological changes after induced injury in leeches. J Invertebr Pathol 74:14–28

    Article  Google Scholar 

  • de Eguileor M, Grimaldi A, Tettamanti G, Valvassori R, Cooper EL, Lanzavecchia G (2000a) Lipopolysaccharide-dependent induction of leech leukocytes that cross-react with vertebrate cellular differentiation markers. Tissue Cell 32:437–445. https://doi.org/10.1054/tice.2000.0132

    Article  PubMed  Google Scholar 

  • de Eguileor M, Grimaldi A, Tettamanti G, Valvassori R, Cooper EL, Lanzavecchia G (2000b) Different types of response to foreign antigens by leech leukocytes. Tissue Cell 32:40–48. https://doi.org/10.1054/tice.1999.0085

    Article  PubMed  Google Scholar 

  • de Eguileor M, Grimaldi A, Tettamanti G, Congiu T, Protasoni M, Reguzzoni M, Valvassori R, Lanzavecchia G (2001a) Ultrastructure and functional versatility of hirudinean botryoidal tissue. Tissue Cell 33:332–341. https://doi.org/10.1054/tice.2001.0181

    Article  PubMed  Google Scholar 

  • de Eguileor M, Grimaldi A, Tettamanti G, Ferrarese R, Congiu T, Protasoni M, Perletti G, Valvassori R, Lanzavecchia G (2001b) Hirudo medicinalis: a new model for testing activators and inhibitors of angiogenesis. Angiogenesis 4:299–312. https://doi.org/10.1023/A:1016025803370

    Article  PubMed  Google Scholar 

  • de Eguileor M, Tettamanti G, Grimaldi A, Congiu T, Ferrarese R, Perletti G, Valvassori R, Cooper EL, Lanzavecchia G (2003) Leeches: immune response, angiogenesis and biomedical applications. Curr Pharm Des 9:133–147. https://doi.org/10.2174/1381612033392198

    Article  PubMed  Google Scholar 

  • de Eguileor M, Tettamanti G, Grimaldi A, Perletti G, Congiu T, Rinaldi L, Valvassori R (2004) Hirudo medicinalis: Avascular tissues for clear-cut angiogenesis studies? Curr Pharm Des 10:1979–1988

    Article  Google Scholar 

  • De Luca K, Frances-Duvert V, Asensio M-J, Ihsani R, Debien E, Taillardet M, Verhoeyen E, Bella C, Lantheaume S, Genestier L, Defrance T (2009) The TLR1/2 agonist PAM3CSK4 instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 23:2063–2074. https://doi.org/10.1038/leu.2009.155

    Article  CAS  PubMed  Google Scholar 

  • De Zoysa M, Nikapitiya C, Kim Y, Oh C, Kang D-H, Whang I, Kim S-J, Lee J-S, Choi CY, Lee J (2010) Allograft inflammatory factor-1 in disk abalone (Haliotis discus discus): molecular cloning, transcriptional regulation against immune challenge and tissue injury. Fish Shellfish Immunol 29:319–326. https://doi.org/10.1016/j.fsi.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  • Deininger MH, Seid K, Engel S, Meyermann R, Schluesener HJ (2000) Allograft inflammatory factor-1 defines a distinct subset of infiltrating macrophages/microglial cells in rat and human gliomas. Acta Neuropathol 100:673–680

    Article  CAS  Google Scholar 

  • Deininger MH, Meyermann R, Schluesener HJ (2002) The allograft inflammatory factor-1 family of proteins. FEBS Lett 514:115–121

    Article  CAS  Google Scholar 

  • Drago F, Sautière PE, Le Marrec-Croq F, Accorsi A, Van Camp C, Salzet M, Lefebvre C, Vizioli J (2014) Microglia of medicinal leech (Hirudo medicinalis) express a specific activation marker homologous to vertebrate ionized calcium-binding adapter molecule 1 (Iba1/alias aif-1). Dev Neurobiol 74:987–1001. https://doi.org/10.1002/dneu.22179

    Article  CAS  PubMed  Google Scholar 

  • Falabella P, Riviello L, Pascale M, Di Lelio I, Tettamanti G, Grimaldi A, Iannone C, Monti M, Pucci P, Tamburro AM, deEguileor M, Gigliotti S, Pennacchio F (2012) Functional amyloids in insect immune response. Insect Biochem Mol Biol 42:203–211. https://doi.org/10.1016/j.ibmb.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  • Fischer E, Lovas M, Németh P (1976) Zincporphyrin pigments in the botryoid tissue of Haemopis sanguisuga L. and their localization by diaminobenzidine-H2o2 reaction. Acta Histochem 55:32–41

    Article  CAS  Google Scholar 

  • Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:0100–0107. https://doi.org/10.1371/journal.pbio.0040006

    Article  CAS  Google Scholar 

  • Franceschi C, Cossarizza A, Monti D, Ottaviani E (1991) Cytotoxicity and immunocyte markers in cells from the freshwater snail Planorbarius corneus (L.) (Gastropoda pulmonata): implications for the evolution of natural killer cells. Eur J Immunol 21:489–493. https://doi.org/10.1002/eji.1830210235

    Article  CAS  PubMed  Google Scholar 

  • Gerber H-P, Ferrara N (2003) The role of VEGF in normal and neoplastic hematopoiesis. J Mol Med 81:20–31. https://doi.org/10.1007/s00109-002-0397-4

    Article  CAS  PubMed  Google Scholar 

  • Girardello R, Drago F, de Eguileor M, Valvassori R, Vizioli J, Tettamanti G, Grimaldi A (2015a) Cytokine impregnated biomatrix: a new tool to study multi-wall carbon nanotubes effects on invertebrate immune cells. J Nanomedicine Nanotechnol 6:323. https://doi.org/10.4172/2157-7439.1000323

    Article  Google Scholar 

  • Girardello R, Tasselli S, Baranzini N, Valvassori R, de Eguileor M, Grimaldi A (2015b) Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS One 10:e0144361. https://doi.org/10.1371/journal.pone.0144361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gondois-Rey F, Chéret A, Mallet F, Bidaut G, Granjeaud S, Lécuroux C, Ploquin M, Müller-Trutwin M, Rouzioux C, Avettand-Fenoël V, De Maria A, Pialoux G, Goujard C, Meyer L, Olive D (2017) A mature NK profile at the time of HIV primary infection is associated with an early response to cART. Front Immunol 8:54. https://doi.org/10.3389/fimmu.2017.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granick JL, Simon SI, Borjesson DL (2012) Hematopoietic stem and progenitor cells as effectors in innate immunity. Bone Marrow Res 2012:1–8. https://doi.org/10.1155/2012/165107

    Article  CAS  Google Scholar 

  • Grimaldi A (2015) Anellidi. In: Piccin (ed) Compendio di immunobiologia compar1. Grimaldi, A. in Compendio di immunobiologia comparata - Ottaviani E. (ed. Piccin) 19–33 (2015). ata - Ottaviani E. pp 19–33

    Google Scholar 

  • Grimaldi A (2016) Origin and fate of hematopoietic stem precursor cells in the leech Hirudo medicinalis. Invertebr Surviv J 13:257–268

    Google Scholar 

  • Grimaldi A, Tettamanti G, Rinaldi L, Perletti G, Valvassori R, De Eguileor M (2004) Role of cathepsin B in leech wound healing. Invertebr Surviv J 1:38–46

    Google Scholar 

  • Grimaldi A, Tettamanti G, Perletti G, Valvassori R, de Eguileor M (2006) Hematopoietic cell formation in leech wound healing. Curr Pharm Des 12:3033–3041. https://doi.org/10.2174/138161206777947443

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi A, Bianchi C, Greco G, Tettamanti G, Noonan DM, Valvassori R, de Eguileor M (2008) In vivo isolation and characterization of stem cells with diverse phenotypes using growth factor impregnated biomatrices. PLoS One 3:e1910. https://doi.org/10.1371/journal.pone.0001910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi A, Banfi S, Gerosa L, Tettamanti G, Noonan DM, Valvassori R, de Eguileor M (2009) Identification, isolation and expansion of myoendothelial cells involved in leech muscle regeneration. PLoS One 4:e7652. https://doi.org/10.1371/journal.pone.0007652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi A, Banfi S, Bianchi C, Gabriella G, Tettamanti G, Noonan DM, Valvassori R, de Eguileor M (2010) The leech: a novel invertebrate model for studying muscle regeneration and diseases. Curr Pharm Des 16:968–977. https://doi.org/10.2174/138161210790883417

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi A, Banfi S, Vizioli J, Tettamanti G, Noonan DM, de Eguileor M (2011) Cytokine loaded biopolymers as a novel strategy to study stem cells during wound-healing processes. Macromol Biosci 11:1008–1019. https://doi.org/10.1002/mabi.201000452

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi A, Girardello R, Malagoli D, Falabella P, Tettamanti G, Valvassori R, Ottaviani E, de Eguileor M (2012a) Amyloid/melanin distinctive mark in invertebrate immunity. Invertebr Surviv J 9:153–162

    Google Scholar 

  • Grimaldi A, Tettamanti G, Congiu T, Girardello R, Malagoli D, Falabella P, Valvassori R, Ottaviani E, de Eguileor M (2012b) The main actors involved in parasitization of Heliothis virescens larva. Cell Tissue Res 350:491–502

    Article  CAS  Google Scholar 

  • Grimaldi A, Ferrarese R, Tettamanti G, Valvassori R, de Eguileor M (2013) Ras activation in Hirudo medicinalis angiogenic process. Invertebr Surviv J 10:7–14

    Google Scholar 

  • Guo H, Fang B, Liao L, Zhao Z, Liu J, Chen H, Hsu SH, Cui Q, Zhao RC (2003) Hemangioblastic characteristics of fetal bone marrow–derived Flk1+CD31−CD34− cells. Exp Hematol 31:650–658. https://doi.org/10.1016/S0301-472X(03)00087-0

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Engelmann P (2013) Earthworm’s immunity in the nanomaterial world: new room , future challenges. Invertebr Surviv J 10:69–76

    Google Scholar 

  • Hildbrand P, Cirulli V, Prinsen RC, Smith KA, Torbett BE, Salomon DR, Crisa L (2004) The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood 104:2010–2019. https://doi.org/10.1182/blood-2003-12-4219

    Article  CAS  PubMed  Google Scholar 

  • Holness CL, da Silva RP, Fawcett J, Gordon S, Simmons DL (1993) Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family. J Biol Chem 268:9661–9666

    CAS  PubMed  Google Scholar 

  • Jeong H-K, Ji K, Kim J, Jou I, Joe E-H (2013) Repair of astrocytes, blood vessels, and myelin in the injured brain: possible roles of blood monocytes. Mol Brain 6:28. https://doi.org/10.1186/1756-6606-6-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kielian TL, Blecha F (1995) CD14 and other recognition molecules for lipopolysaccharide: a review. Immunopharmacology 29:187–205

    Article  CAS  Google Scholar 

  • Kostich M, Fire A, Fambrough DM (2000) Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. J Cell Sci 113:2595–2606

    CAS  PubMed  Google Scholar 

  • Kranenburg O, Moolenaar WH (2001) Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene 20:1540–1546. https://doi.org/10.1038/sj.onc.1204187

    Article  CAS  PubMed  Google Scholar 

  • Kruse M, Steffen R, Batel R, Müller IM, Müller WE (1999) Differential expression of allograft inflammatory factor 1 and of glutathione peroxidase during auto- and allograft response in marine sponges. J Cell Sci 112:4305–4313

    CAS  PubMed  Google Scholar 

  • Li J, Chen J, Zhang Y, Yu Z (2013) Expression of allograft inflammatory factor-1 (AIF-1) in response to bacterial challenge and tissue injury in the pearl oyster, Pinctada martensii. Fish Shellfish Immunol 34:365–371. https://doi.org/10.1016/j.fsi.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  • Luhtala N, Parker R (2010) T2 family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci 35:253–259. https://doi.org/10.1016/j.tibs.2010.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macagno ER, Gaasterland T, Edsall L, Bafna V, Soares MB, Scheetz T, Casavant T, Da Silva C, Wincker P, Tasiemski A, Salzet M (2010) Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes. BMC Genomics 11:407. https://doi.org/10.1186/1471-2164-11-407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal A, Viswanathan C (2015) Natural killer cells: in health and disease. Hematol Oncol Stem Cell Ther 8:47–55. https://doi.org/10.1016/j.hemonc.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GB, Khandaker MH, Rahimpour R, Xu L, Lazarovits AI, Pickering JG, Suria H, Madrenas J, Pomerantz DK, Feldman RD, Kelvin DJ (1999) CD45 modulation of CXCR1 and CXCR2 in human polymorphonuclear leukocytes. Eur J Immunol 29:1467–1476. https://doi.org/10.1002/(SICI)1521-4141(199905)29:05<1467::AID-IMMU1467>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24:801–812. https://doi.org/10.1016/j.immuni.2006.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovando F, Gimpel C, Cardenas C, Da Silva JRMC, De Lorgeril J, Gonzalez M (2012) Cloning and expression analysis of allograft inflammatory factor type 1 in coelomocytes of Antarctic sea urchin (Sterechinus neumayeri). J Shellfish Res 31:875–883. https://doi.org/10.2983/035.031.0336

    Article  Google Scholar 

  • Podolnikova NP, Podolnikov AV, Haas TA, Lishko VK, Ugarova TP (2015) Ligand recognition specificity of leukocyte integrin α M β 2 (mac-1, CD11b/CD18) and its functional consequences. Biochemistry 54:1408–1420. https://doi.org/10.1021/bi5013782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porchet-Henneré E, Dugimont T, Fischer A (1992) Natural killer cells in a lower invertebrate, Nereis diversicolor. Eur J Cell Biol 58:99–107

    PubMed  Google Scholar 

  • Quaglino D, Cooper EL, Salvioli S, Capri M, Suzuki MM, Ronchetti IP, Franceschi C, Cossarizza A (1996) Earthworm coelomocytes in vitro: cellular features and “granuloma” formation during cytotoxic activity against the mammalian tumor cell target K562. Eur J Cell Biol 70:278–278

    CAS  PubMed  Google Scholar 

  • Raaijmakers MHGP, Scadden DT (2008) Evolving concepts on the microenvironmental niche for hematopoietic stem cells. Curr Opin Hematol 15:301–306. https://doi.org/10.1097/MOH.0b013e328303e14c

    Article  PubMed  Google Scholar 

  • Roach T, Slater S, Koval M, White L, McFarland EC, Okumura M, Thomas M, Brown E (1997) CD45 regulates Src family member kinase activity associated with macrophage integrin-mediated adhesion. Curr Biol 7:408–417. https://doi.org/10.1016/S0960-9822(06)00188-6

    Article  CAS  PubMed  Google Scholar 

  • Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J (1996) Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 24:406–415

    CAS  PubMed  Google Scholar 

  • Sándor N, Lukácsi S, Ungai-Salánki R, Orgován N, Szabó B, Horváth R, Erdei A, Bajtay Z (2016) CD11c/CD18 dominates adhesion of human monocytes, macrophages and dendritic cells over CD11b/CD18. PLoS One 11:e0163120. https://doi.org/10.1371/journal.pone.0163120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada J, Li F, Komatsu M (2015) R-Ras inhibits VEGF-induced p38MAPK activation and HSP27 phosphorylation in endothelial cells. J Vasc Res 52:347–359. https://doi.org/10.1159/000444526

    Article  CAS  PubMed  Google Scholar 

  • Sawyer RT (1986) Leech biology and behaviour 1: anatomy, physiology and behaviour. Oxford University Press, Oxford

    Google Scholar 

  • Schikorski D, Cuvillier-Hot V, Leippe M, Boidin-Wichlacz C, Slomianny C, Macagno E, Salzet M, Tasiemski A (2008) Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J Immunol 181:1083–1095. https://doi.org/10.4049/jimmunol.181.2.1083. [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schorn T, Drago F, De Eguileor M, Valvassori R, Vizioli J, Tettamanti G, Grimaldi A (2015a) The allograft inflammatory Factor-1 ( AIF-1 ) homologous in Hirudo medicinalis (medicinal leech) is involved in immune response during wound healing and graft rejection processes abstract allograft inflammatory factor-1 ( AIF-1 ) is a 17 kDa cytokine-in. ISJ 1:129–141

    Google Scholar 

  • Schorn T, Drago F, Tettamanti G, Valvassori R, de Eguileor M, Vizioli J, Grimaldi A (2015b) Homolog of allograft inflammatory factor-1 induces macrophage migration during innate immune response in leech. Cell Tissue Res 359:853–864. https://doi.org/10.1007/s00441-014-2054-y

    Article  CAS  PubMed  Google Scholar 

  • Seaman WE (2000) Natural killer cells and natural killer T cells. Arthritis Rheum 43:1204–1217. https://doi.org/10.1002/1529-0131(200006)43:6<1204::AID-ANR3>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  • Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ (1998) How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol 10:581–587. https://doi.org/10.1016/S0952-7915(98)80227-6

    Article  CAS  PubMed  Google Scholar 

  • Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC (1989) Cooperative interactions of LFA-1 and mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 83:2008–2017. https://doi.org/10.1172/JCI114111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommerville LJ, Kelemen SE, Ellison SP, England RN, Autieri MV (2012) Increased atherosclerosis and vascular smooth muscle cell activation in AIF-1 transgenic mice fed a high-fat diet. Atherosclerosis 220:45–52. https://doi.org/10.1016/j.atherosclerosis.2011.07.095

    Article  CAS  PubMed  Google Scholar 

  • Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434. https://doi.org/10.1038/346425a0

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Ostergaard HL, Thomas M, D’Oro U, Ashwell J, Hermiston M, Xu Z, Weiss A, Saunders A, Johnson P, Roach T, Slater S, Koval M, White L, McFarland EC, Arroyo A, Campanero M, Sanchez-Mateos P, Zapata J, Ursa M, Shenoi H, Seavitt J, Zheleznyak A, Thomas M, Brown E, Li R, Wong N, Jabali M, Johnson P, Wong N, Lai J, Maeshima N, Johnson P, Wong N, Lai J, Birkenhead D, Shaw A, Johnson P, Avraham H, Park S, Schinkmann K, Avraham S, Schlaepfer D, Hauck C, Sieg D, Hatch W, Ganju R, Hiregowdara D, Avraham S, Groopman J, Duong L, Rodan G, Okigaki M, Davis C, Falasca M, Harroch S, Felsenfeld D, Avraham S, London R, Fu Y, Ota S, Hiregowdara D, Herzog H, Nicholl J, Hort Y, Sutherland G, Shine J, Lev S, Moreno H, Martinez R, Canoll P, Peles E, Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K, Yu H, Li X, Marchetto G, Dy R, Hunter D, Ostergaard H, Lysechko T, Dikic I, Tokiwa G, Lev S, Courtneidge S, Schlessinger J, Felsch J, Cachero T, Peralta E, Park S, Avraham H, Avraham S, Shen Y, Schaller M, Lulo J, Yuzawa S, Schlessinger J, Deakin N, Turner C, Turner C, Tumbarello D, Brown M, Turner C, Robertson L, Ostergaard H, Weng Z, Taylor J, Turner C, Brugge J, Seidel-Dugan C, Schaller M, Parsons J, Li X, Earp H, Petit V, Boyer B, Lentz D, Turner C, Thiery J, Romanova L, Hashimoto S, Chay K, Blagosklonny M, Sabe H, Brown M, Turner C, Robertson L, Mireau L, Ostergaard H, Rose D, Achuthan A, Elsegood C, Masendycz P, Hamilton J, Scholz G, Romanova L, Mushinski J, Fernandis A, Cherla R, Ganju R, Roach J, Choi S, Schaub R, Leach R, Roodman G, Brissette W, Baker D, Stam E, Umland J, Griffiths R, Fleetwood A, Lawrence T, Hamilton J, Cook A, Falk L, Hogan M, Vogel S, Pelegrin P, Surprenant A, Byth K, Conroy L, Howlett S, Smith A, May J, Ashwell J, D’Oro U, Thomas M, Brown E, Alexander D, Zhu J, Brdicka T, Katsumoto T, Lin J, Weiss A, Bellis S, Miller J, Turner C, Thomas J, Cooley M, Broome J, Salgia R, Griffin J, Ostergaard H, Lou O, Arendt C, Berg N, Levkau B, Herren B, Koyama H, Ross R, Raines E, Carragher N, Fincham V, Riley D, Frame M, Chay K, Park S, Mushinski J, Shim S, Kook S, Kim J, Song W, Harrington E, Smeglin A, Newton J, Ballard G, Rounds S, Ogimoto M, Katagiri T, Mashima K, Hasegawa K, Mizuno K, Dupere-Minier G, Desharnais P, Bernier J, Klaus S, Sidorenko S, Clark E, Lesage S, Steff A, Philippoussis F, Page M, Trop S, Blaylock M, Sexton D, Walsh G, Ferguson B, Ostergaard H, Kuranaga E, Miura M, Perrin B, Huttenlocher A, Liu X, Schnellmann R, Carragher N, Levkau B, Ross R, Raines E, Carragher N, Westhoff M, Riley D, Potter D, Dutt P, Franco S, Rodgers M, Perrin B, Han J, Bennin D, Cortesio C, Boateng L, Piazza T, Bennin D, Huttenlocher A, Calle Y, Carragher N, Thrasher A, Jones G, Turner C, Turner C, Korade-Mirnics Z, Corey S, Han S, Mistry A, Chang J, Cunningham D, Griffor M, Roach T, Slater S, White L, Zhang X, Majerus P, Marzia M, Chiusaroli R, Neff L, Kim N, Chishti A, Ogimoto M, Arimura Y, Katagiri T, Mitomo K, Woodgett J, Hesslein D, Takaki R, Hermiston M, Weiss A, Lanier L, Deszo E, Brake D, Cengel K, Kelley K, Freund G, Bijian K, Zhang L, Shen S, Zhang M, Moran M, Round J, Low T, Patel V, Richardson A, Malik R, Hildebrand J, Parsons J, Salgia R, Avraham S, Pisick E, Li J, Raja S, Schaller M, Sasaki T, Hiregowdara D, Avraham H, Fu Y, London R, Avraham S (2013) A role for the protein tyrosine phosphatase CD45 in macrophage adhesion through the regulation of Paxillin degradation. PLoS One 8:e71531. https://doi.org/10.1371/journal.pone.0071531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang PM-K, Zhou S, Meng X-M, Wang Q-M, Li C-J, Lian G-Y, Huang X-R, Tang Y-J, Guan X-Y, Yan BP-Y, To K-F, Lan H-Y (2017) Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat Commun 8:14677. https://doi.org/10.1038/ncomms14677

    Article  PubMed  PubMed Central  Google Scholar 

  • Tettamanti G, Grimaldi A, Ferrarese R, Palazzi M, Perletti G, Valvassori R, Cooper EL, Lanzavecchia G, de Eguileor M (2003a) Leech responses to tissue transplantation. Tissue Cell 35:199–2012

    Article  Google Scholar 

  • Tettamanti G, Grimaldi A, Valvassori R, Rinaldi L, de Eguileor M (2003b) Vascular endothelial growth factor is involved in neoangiogenesis in Hirudo medicinalis (Annelida, Hirudinea). Cytokine 22:168–179

    Article  CAS  Google Scholar 

  • Tettamanti G, Grimaldi A, Rinaldi L, Arnaboldi F, Congiu T, Valvassori R, de Eguileor M (2004) The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol Cell 96:443–455. https://doi.org/10.1016/j.biolcel.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  • Tettamanti G, Malagoli D, Benelli R, Albini A, Grimaldi A, Perletti G, Noonan DM, de Eguileor M, Ottaviani E (2006) Growth factors and chemokines: a comparative functional approach between invertebrates and vertebrates. Curr Med Chem 13:2737–2750. https://doi.org/10.2174/092986706778521986

    Article  CAS  PubMed  Google Scholar 

  • Utans U, Arceci RJ, Yamashita Y, Russell ME (1995) Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection. J Clin Invest 95:2954–2962. https://doi.org/10.1172/JCI118003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510. https://doi.org/10.1038/ni1582

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chopp M, Gregg SR, Zhang RL, Teng H, Jiang A, Feng Y, Zhang ZG (2008) Neural progenitor cells treated with EPO induce angiogenesis through the production of Vegf. J Cereb Blood Flow Metab 28:1361–1368. https://doi.org/10.1038/jcbfm.2008.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watano K, Iwabuchi K, Fujii S, Ishimori N, Mitsuhashi S, Ato M, Kitabatake A, Onoe K (2001) Allograft inflammatory factor-1 augments production of interleukin-6, −10and −12 by a mouse macrophage line. Immunology 104:307–316. https://doi.org/10.1046/j.1365-2567.2001.01301.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells SJ, Bray RA, Stempora LL, Farhi DC (1996) CD117/CD34 expression in leukemic blasts. Am J Clin Pathol 106:192–195

    Article  CAS  Google Scholar 

  • Zhang L, Zhao J, Li C, Su X, Chen A, Li T, Qin S (2011) Cloning and characterization of allograft inflammatory factor-1 (AIF-1) from manila clam Venerupis philippinarum. Fish Shellfish Immunol 30:148–153. https://doi.org/10.1016/j.fsi.2010.09.021

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Péault B (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25:1025–1034. https://doi.org/10.1038/nbt1334

    Article  CAS  PubMed  Google Scholar 

  • Zhu JW, Doan K, Park J, Chau AH, Zhang H, Lowell CA, Weiss A (2011) Receptor-like tyrosine phosphatases CD45 and CD148 have distinct functions in chemoattractant-mediated neutrophil migration and response to S. aureus. Immunity 35:757–769. https://doi.org/10.1016/j.immuni.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Grimaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grimaldi, A., Tettamanti, G., de Eguileor, M. (2018). Annelida: Hirudinea (Leeches): Heterogeneity in Leech Immune Responses. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_8

Download citation

Publish with us

Policies and ethics