Skip to main content

Annelida: Oligochaetes (Segmented Worms): Earthworm Immunity, Quo Vadis? Advances and New Paradigms in the Omics Era

  • Chapter
  • First Online:
Advances in Comparative Immunology

Abstract

In the last few decades the field of comparative immunology has undergone an enormous amount of progress due to the novel research tools introduced and the expanding amount of transcriptomic information. Recently, the various “omics” approaches have covered every scientific field of biomedical research.

Earthworms as ecologically prominent organisms are used in different research areas of biological and environmental sciences. In-depth research on the immune components of earthworms is now showing rapid progress, but the precise molecular data on this “non-classical” model organism are still relatively limited compared to those from “classical” invertebrate model (e.g., Drosophila, Caenorhabditis elegans) species. In fact, earthworm immunity possesses many common characteristics with other invertebrate organisms but also harbors some unique features.

In this chapter we briefly summarize our recent findings, concentrating on the cellular components of earthworm immunity applying inhouse-developed monoclonal antibodies. Furthermore, we discuss several fast-advancing scientific fields that rely on different omics data (e.g., transcriptome, epigenome, microbiome, and regenerative biology) and those that are relatively under-represented in invertebrate (earthworm) immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrowsmith CH, Bountra C, Fish PV et al (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400

    CAS  PubMed  Google Scholar 

  • Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bely AE (2006) Distribution of segment regeneration ability in the Annelida. Integr Comp Biol 46:508–518

    PubMed  Google Scholar 

  • Berrill NJ (1952) Regeneration and budding in worms. Biol Rev 27:401–438

    Google Scholar 

  • Beschin A, Bilej M, Brys L et al (1999) Convergent evolution of cytokines. Nature 400:627–628

    CAS  PubMed  Google Scholar 

  • Bilej M, Procházková P, Silerová M et al (2010) Earthworm immunity. Adv Exp Med Biol 708:66–79

    CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    CAS  PubMed  Google Scholar 

  • Bosch TC (2013) Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol 67:499–518

    CAS  PubMed  Google Scholar 

  • Bosch TC (2014) Rethinking the role of immunity: lessons from Hydra. Trends Immunol 35:495–502

    CAS  PubMed  Google Scholar 

  • Brulle F, Mitta G, Cocquerelle C et al (2006) Cloning and real time PCR testing of 14 potential biomarkers in Eisenia fetida following cadmium exposure. Env. Sci Technol 40:2844–2850

    CAS  Google Scholar 

  • Brulle F, Morgan AJ, Cocquerelle C et al (2010) Transcriptomic underpinning of toxicant-mediated physiological function alterations in three terrestrial invertebrate taxa: a review. Environ Pollut 158:2793–2808

    CAS  PubMed  Google Scholar 

  • Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599

    CAS  PubMed  Google Scholar 

  • Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves da Silva PG, Corrêa CL, de Carvalho SL et al (2013) The crustacean central nervous system in focus: subacute neurodegeneration induces a specific innate immune response. PLoS One 8:e80896

    PubMed  PubMed Central  Google Scholar 

  • Cooper EL, Balamurugan M (2010) Unearthing a source of medicinal molecules. Drug Discov Today 15:966–972

    PubMed  Google Scholar 

  • Cooper EL, Hirabayashi K (2013) Origin of innate immune responses: revelation of food and medicinal applications. J Tradit Complement Med 3:204–212

    PubMed  PubMed Central  Google Scholar 

  • Cooper EL, Roch P (1984) Earthworm leukocyte interactions during early stages of graft rejection. J Exp Zool 232:67–72

    CAS  PubMed  Google Scholar 

  • Cooper EL, Kauschke E, Cossarizza A (2002) Digging for innate immunity since Darwin and Metchnikoff. BioEssays 24:319–333

    CAS  PubMed  Google Scholar 

  • Cooper EL, Kvell K, Engelmann P et al (2006) Still waiting for the Toll? Immunol Lett 104:16–28

    Google Scholar 

  • Cossarizza A, Cooper EL, Suzuki MM et al (1996) Earthworm leukocytes that are not phagocytic and cross-react with several human epitopes can kill human tumor cell lines. Exp Cell Res 224:174–182

    CAS  PubMed  Google Scholar 

  • Darwin CR (1881) The formation of vegetable mould, through the action of worms. Murray J, London

    Google Scholar 

  • de Eguileor M, Grimaldi A, Tettamanti G et al (2000) Lipopolysaccharide-dependent induction of leech leukocytes that cross-react with vertebrate cellular differentiation markers. Tissue Cell 32:437–445

    PubMed  Google Scholar 

  • Dinsmore CE (2001) Regeneration: principles. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. http://www.els.net. https://doi.org/10.1038/npg.els.0001112

    Chapter  Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    CAS  PubMed  Google Scholar 

  • Dvořák J, Mančíková V, Pižl V et al (2013) Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida. PLoS One 8:e79257

    PubMed  PubMed Central  Google Scholar 

  • Dvořák J, Roubalová R, Procházková P et al (2016) Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms. Dev Comp Immunol 57:67–74

    PubMed  Google Scholar 

  • Elsworth B, Jones M, Blaxter M (2013) Badger--an accessible genome exploration environment. Bioinformatics 29:2788–2789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525

    CAS  PubMed  Google Scholar 

  • Engelmann P, Pál J, Berki T et al (2002) Earthworm leukocytes reacted with different mammalian antigen specific monoclonal antibodies. Zoology 105:257–265

    CAS  PubMed  Google Scholar 

  • Engelmann P, Kiss J, Csöngei V et al (2004) Earthworm leukocytes kill HeLa, HEp-2, PC-12 and PA317 cells in vitro. J Biochem Biophys Methods 61:215–227

    CAS  PubMed  Google Scholar 

  • Engelmann P, Cooper EL, Németh P (2005a) Anticipating innate immunity without a Toll. Mol Immunol 42:931–942

    CAS  PubMed  Google Scholar 

  • Engelmann P, Pálinkás L, Cooper EL et al (2005b) Monoclonal antibodies identify four distinct annelid leukocyte markers. Dev Comp Immunol 29:599–614

    CAS  PubMed  Google Scholar 

  • Engelmann P, Cooper EL, Opper B, Németh P (2011) Earthworm innate immune system. In: Karaca A (ed) Biology of earthworms. Soil Biology 24. Springer, Berlin/Heidelberg, pp 229–245

    Google Scholar 

  • Engelmann P, Hayashi Y, Bodó K et al (2016a) New aspects of earthworm innate immunity: novel molecules and old proteins with unexpected functions. In: Ballarin L, Cammarata M (eds) Lessons in immunity: from single cell organisms to mammals. Elsevier-Academic Press, New York/Amsterdam, pp 53–66

    Google Scholar 

  • Engelmann P, Hayashi Y, Bodó K et al (2016b) Phenotypic and functional characterization of earthworm coelomocytes: linking light scatter-based cell typing and imaging of the sorted populations. Dev Comp Immunol 65:41–52

    PubMed  Google Scholar 

  • Fischer E (1977) The function of chloragosomes, the specific age-pigment granules of annelids – a review. Exp Gerontol 12:69–74

    CAS  PubMed  Google Scholar 

  • Fischer E, Molnár L (1992) Environmental aspects of the chloragogenous tissue of earthworms. Soil Biol Biochem 24:1723–1727

    CAS  Google Scholar 

  • Follert P, Cremer H, Béclin C (2014) MicroRNAs in brain development and function: a matter of flexibility and stability. Front Mol Neurosci 7:5

    PubMed  PubMed Central  Google Scholar 

  • Fuller-Espie SL (2010) Using flow cytometry to measure phagocytic uptake in earthworms. J Microbiol Biol Educ 11:144–151

    PubMed  PubMed Central  Google Scholar 

  • Gaspar-Maia A, Alajem A, Meshorer E et al (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12:36–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert SF, Bosch TC, Ledón-Rettig C (2015) Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 16:611–622

    CAS  PubMed  Google Scholar 

  • Godwin JW, Brockes JP (2006) Regeneration, tissue injury and the immune response. J Anat 209:423–432

    PubMed  PubMed Central  Google Scholar 

  • Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110:9415–9420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes AQ, Nolasco S, Soares H (2013) Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 14:16010–16039

    PubMed  PubMed Central  Google Scholar 

  • Gong P, Perkins EJ (2016) Earthworm toxicogenomics: a renewed genome-wide quest for novel biomarkers and mechanistic insights. Appl Soil Ecol 104:12–24

    Google Scholar 

  • Gong P, Guan X, Inouye LS et al (2008) Transcriptomic analysis of RDX and TNT interactive sublethal effects in the earthworm Eisenia fetida. BMC Genomics 9:S15

    PubMed  PubMed Central  Google Scholar 

  • Gong P, Xie F, Zhang B et al (2010) In silico identification of conserved microRNAs and their target transcripts from expressed sequence tags of three earthworm species. Comput Biol Chem 34:313–319

    CAS  PubMed  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hauton C, Smith VJ (2007) Adaptive immunity in invertebrate: a straw house without a mechanistic foundation. BioEssays 29:1138–1146

    CAS  PubMed  Google Scholar 

  • Hayashi Y, Engelmann P (2013) Earthworm’s immunity in the nanomaterial world: new room, future challenges. Invertebr Surv J 10:69–76

    Google Scholar 

  • Hayashi Y, Engelmann P, Foldbjerg R et al (2012) Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ Sci Technol 46:4166–4173

    CAS  PubMed  Google Scholar 

  • Hayashi Y, Miclaus T, Scavenius C et al (2013) Species differences take shape at nanoparticles protein corona made of native repertoire assists cellular interaction. Environ Sci Technol 47:14367–14375

    CAS  PubMed  Google Scholar 

  • Hayashi Y, Miclaus T, Engelmann P et al (2016) Nanosilver pathophysiology in earthworms: transcriptional profiling of secretory proteins and the implication for the protein corona. Nanotoxicology 10:303–311

    CAS  PubMed  Google Scholar 

  • Hennessy C, McKernan DP (2016) Epigenetics and innate immunity: the ‘unTolld’ story. Immunol Cell Biol 94:631–639

    CAS  PubMed  Google Scholar 

  • Homa J, Zorksa A, Wesolovski D, Chadzinska M (2013) Dermal exposure to immunostimulants induces changes in activity and proliferation of coelomocytes of Eisenia andrei. J Comp Physiol B 183:313–322

    CAS  PubMed  Google Scholar 

  • Huang XM, Tian QN, Bao ZX et al (2012) Cloning and identification of microRNAs in earthworm (Eisenia fetida). Biochem Genet 50:1–11

    CAS  PubMed  Google Scholar 

  • Jamieson BGM (1981) Chloragocytes. In: Jamieson BGM (ed) The ultrastructure of the oligochaete. Academic Press, New York, pp 96–118

    Google Scholar 

  • Jupatanakul N, Sim S, Dimopoulos G (2014) The insect microbiome modulates vector competence for arboviruses. Virus 6:4294–4313

    CAS  Google Scholar 

  • Kauschke E, Komiyama K, Moro I et al (2001) Evidence for perforin-like activity associated with earthworm leukocytes. Zoology 104:13–24

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Ohta N, Umeda M (2004) Biology of lysenin, a protein in the coelomic fluid of the earthworm Eisenia foetida. Int Rev Cytol 236:45–99

    CAS  PubMed  Google Scholar 

  • Kosik KS (2009) MicroRNAs tell an evo-devo story. Nat Rev Neurosci 10:754–759

    CAS  PubMed  Google Scholar 

  • Kvell K, Cooper EL, Engelmann P et al (2007) Blurring borders: innate immunity with adaptive features. Clin Dev Immunol 2007:83671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lassegues M, Milochau A, Doignon F et al (1997) Sequence and expression of an Eisenia fetida-derived cDNA clone that encodes the 40 kDa fetidin antibacterial protein. Eur J Biochem 246:756–762

    CAS  PubMed  Google Scholar 

  • Layeghifard M, Hwang DM, Guttman DS (2017) Disentangling interactions in the microbiome: a network perspective. Trends Microbiol 25:217–228

    CAS  PubMed  Google Scholar 

  • Liebmann E (1942) The coelomocytes of Lumbricidae. J Morphol 71:221–249

    Google Scholar 

  • Liebmann E (1943) New light on regeneration of Eisenia foetida (SAV.). J Morphol 73:583–610

    Google Scholar 

  • Liu D, Lian B, Wu C et al (2017) A comparative study of gut microbiota profiles of earthworms fed in three different substrates. Symbiosis 74:21–29

    Google Scholar 

  • Logie C, Stunnenberg HG (2016) Epigenetic memory: a macrophage perspective. Semin Immunol 28:359–367

    CAS  PubMed  Google Scholar 

  • Luo GZ, He C (2017) DNA N(6)-methyladenine in metazoans: functional epigenetic mark or bystander? Nat Struct Mol Biol 24:503–506

    CAS  PubMed  Google Scholar 

  • Mácsik LL, Somogyi I, Opper B et al (2015) Induction of apoptosis-like cell death by coelomocyte extracts from Eisenia andrei earthworms. Mol Immunol 67:213–222

    PubMed  Google Scholar 

  • Mainschein J (2011) Regenerative medicine’s historical roots in regeneration, transplantation and translation. Dev Biol 358:278–284

    Google Scholar 

  • Mathew LK, Sengupta S, Kawakami A et al (2007) Unraveling tissue regeneration pathways using chemical genetics. J Biol Chem 282:35202–35210

    CAS  PubMed  Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TC et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta A, Baltimore D (2016) MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol l16:279–294

    Google Scholar 

  • Mikami Y, Fukushima A, Kuwada-Kusunose T et al (2015) Whole transcriptome analysis using next-generation sequencing of sterile-cultured Eisenia andrei for immune system research. PLoS One 10:e0118587

    PubMed  PubMed Central  Google Scholar 

  • Mill PJ (1978) Physiology of annelids. Academic Press, London

    Google Scholar 

  • Milutinović B, Kurtz J (2016) Immune memory in invertebrates. Semin Immunol 28:328–342

    PubMed  Google Scholar 

  • Molnar L, Pollak E, Skopek Z et al (2015) Immune system participates in brain regeneration and restoration of reproduction in the earthworm Dendrobaena veneta. Dev Comp Immunol 52:269–279

    PubMed  Google Scholar 

  • Moment GB (1974) The possible roles of coelomic cells and their yellow pigment in annelid regeneration and aging. Growth 38:209–218

    CAS  PubMed  Google Scholar 

  • Morgan TH (1901) Regeneration. Macmillan, New York

    Google Scholar 

  • Myohara M (2004) Differential tissue development during embryogenesis and regeneration in an annelid. Dev Dyn 231:349–358

    CAS  PubMed  Google Scholar 

  • Nyberg KG, Conte MA, Kostyun JL et al (2012) Transcriptome characterization via 454 pyrosequencing of the annelid Pristina leidyi, an emerging model for studying the evolution of regeneration. BMC Genomics 13:287

    CAS  PubMed  PubMed Central  Google Scholar 

  • OECD (1984) Guideline for testing chemicals. OECD, Paris

    Google Scholar 

  • OECD (2004) Earthworm reproduction test (Eisenia fetida/Eisenia andrei). OECD, Paris

    Google Scholar 

  • Okrzesik J, Kachamakova-Trojanowska N, Jozkowicz A et al (2013) Reversible inhibition of reproduction during regeneration of cerebral ganglia and celomocytes in the earthworm Dendrobaena veneta. Invertebr Surv J 10:151–161

    Google Scholar 

  • Opper B, Bognár A, Heidt D et al (2013) Revising lysenin expression of earthworm coelomocytes. Dev Comp Immunol 39:214–218

    CAS  PubMed  Google Scholar 

  • Parrinello N, Vizzini A, Arizza V et al (2008) Enhanced expression of a cloned and sequenced Ciona intestinalis TNF alpha-like (CiTNF alpha) gene during the LPS-induced inflammatory response. Cell Tissue Res 334:305–317

    CAS  PubMed  Google Scholar 

  • Pecot CV, Calin GA, Coleman RL et al (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67

    CAS  PubMed  Google Scholar 

  • Pirooznia M, Gong P, Guan X et al (2007) Cloning, analysis and functional annotation of expressed sequence tags from the earthworm Eisenia fetida. BMC Bioinformatics 8:S7

    PubMed  PubMed Central  Google Scholar 

  • Plytycz B, Kielbasa E, Grebosz A et al (2010) Riboflavin mobilization from eleocyte stores in the earthworm Dendrodrilus rubidus inhabiting aerially-contaminated Ni smelter soil. Chemosphere 81:199–205

    CAS  PubMed  Google Scholar 

  • Procházková P, Šustr V, Dvořák J et al (2013) Correlation between the activity of digestive enzymes and nonself recognition in the gut of Eisenia andrei earthworms. J Invertebr Pathol 114:217–221

    PubMed  Google Scholar 

  • Quintin J, Saeed S, Martens JHA et al (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–232

    CAS  PubMed  Google Scholar 

  • Roch P (1979) Leukocyte DNA synthesis in grafted Lumbricids: and approach to study histocompatibility in invertebrates. Dev Comp Immunol 3:417–428

    CAS  PubMed  Google Scholar 

  • Rosa D (1896) I Linfociti degli Oljgocheti. Mem R Ace Tor 46:149–172

    Google Scholar 

  • Rudi K, Strætkvern KO (2012) Correlations between Lumbricus terrestris survival and gut microbiota. Microb Ecol Health Dis 23:17316

    Google Scholar 

  • Santoyo MM, Flores CR, Torres AL et al (2011) Global DNA methylation in earthworms: a candidate biomarker of epigenetic risks related to the presence of metals/metalloids in terrestrial environments. Environ Pollut 159:2387–2392

    CAS  PubMed  Google Scholar 

  • Schikorski D, Cuvillier-Hot V, Leippe M et al (2008) Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J Immunol 181:1083–1095

    CAS  PubMed  Google Scholar 

  • Schröder K, Bosch TC (2016) The origin of mucosal immunity: lessons from the holobiont Hydra. MBio 7:e01184-16

    Google Scholar 

  • Self-Fordham JB, Naqvi AR, Uttamani JR et al (2017) MicroRNA: dynamic regulators of macrophage polarization and plasticity. Front Immunol 8:1062

    PubMed  PubMed Central  Google Scholar 

  • Selosse MA, Bessis A, Pozo MJ (2014) Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends Microbiol 22:607–613

    CAS  PubMed  Google Scholar 

  • Silverstein AM (2001) History of immunology. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. http://www.els.net. https://doi.org/10.1038/npg.els.0003078

    Chapter  Google Scholar 

  • Somogyi I, Boros A, Engelmann P et al (2009) Pituitary adenylate cyclase-activating polypeptide-like compounds could modulate the activity of coelomocytes in the earthworm. Ann N Y Acad Sci 1163:521–523

    CAS  PubMed  Google Scholar 

  • Šrut M, Drechsel V, Höckner M (2017) Low levels of Cd induce persisting epigenetic modifications and acclimation mechanisms in the earthworm Lumbricus terrestris. PLoS One 12:e0176047

    PubMed  PubMed Central  Google Scholar 

  • Stein EA, Avtalion RR, Cooper EL (1977) The coelomocytes of the earthworm Lumbricus terrestris: morphology and phagocytic properties. J Morphol 153:467–477

    CAS  PubMed  Google Scholar 

  • Stürzenbaum SR, Georgiev O, Morgan AJ et al (2004) Cadmium detoxification in earthworms: from genes to cells. Env. Sci Technol 38:6283–6289

    Google Scholar 

  • Stürzenbaum SR, Andre J, Kille P et al (2009) Earthworm genome, genes and proteins: the (re)discovery of Darwin’s worms. Proc R Soc B 276:789–797

    PubMed  Google Scholar 

  • Sun Y, Zhou Z, Wang L et al (2014) The immunomodulation of a novel tumor necrosis factor (CgTNF-1) in oyster Crassotrea gigas. Fish Shellfish Immunol 45:291–299

    CAS  Google Scholar 

  • Tak ES, Cho SJ, Park SC (2015) Gene expression profiling of coelomic cells anddiscovery of immune-related genes in the earthworm, Eisenia andrei, using expressed sequence tags. Biosci Biotechnol Biochem 79:367–373

    CAS  PubMed  Google Scholar 

  • Tessmar-Raible K, Arendt D (2003) Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Curr Opin Genet Dev 13:331–340

    CAS  PubMed  Google Scholar 

  • Thunders M, Cavanagh J, Li Y (2017) De novo transcriptome assembly, functional annotation and differential gene expression analysis of juvenile and adult E. fetida, a model oligochaete used in ecotoxicological studies. Biol Res 50:7

    PubMed  PubMed Central  Google Scholar 

  • Valembois P, Roch P, Lasségues M et al (1982) Antibacterial activity of the haemolytic system from the earthworm Eisenia fetida andrei. J Invertebr Pathol 40:21–27

    Google Scholar 

  • van der Meer JW, Joosten LAB, Riksen N et al (2015) Trained immunity: a smart way to enhance innate immune defence. Mol Immunol 68:40–44

    PubMed  Google Scholar 

  • Van Straalen NM, Roelofs D (2008) Genomics technology for assessing soil pollution. J. Biology 7:19

    Google Scholar 

  • Vandegehuchte MB, Janssen CR (2014) Epigenetics in an ecotoxicological context. Mutat Res Genet Toxicol Environ Mutagen 764-765:36–45

    CAS  PubMed  Google Scholar 

  • Velki M, Ečimović S (2017) Important isssues in ecotoxicological investigations using earthworms. Rev Environ Contam Toxicol 239:157–184

    CAS  PubMed  Google Scholar 

  • Vilcinskas A (2016) The role of epigenetics in host-parasite coevolution: lessons from the model insects Galleria mellonella and Tribolium castaneum. Zoology 119:273–280

    PubMed  Google Scholar 

  • Vitulo N, Dalla Valle L et al (2017) Downregulation of lizard immuno-genes in the regenerating tail and myogenes in the scarring limb suggests that tail regeneration occurs in an immuno-privileged organ. Protoplasma 254:2127–2141

    CAS  PubMed  Google Scholar 

  • Weaver H, Wood W (2016) Creating a buzz about macrophages: the fly as an vivo model for studying immune cell behaviour. Dev Cell 38:129–132

    Google Scholar 

  • Wiens GD, Glenney GW (2011) Origin and evolution of TNF and TNF receptor superfamilies. Dev Comp Immunol 35:1324–1335

    CAS  PubMed  Google Scholar 

  • Wilhelm M, Koza A, Engelmann P et al (2006) Evidence for the presence of thyroid-stimulating hormone, thyroglobulin and their receptors in Eisenia fetida: a multilevel hormonal interface between the nervous system and the peripherial tissues. Cell Tissue Res 324:535–546

    CAS  PubMed  Google Scholar 

  • Xiao N, Ge F, Edwards CA (2011) The regeneration capacity of an earthworms Eisenia fetida, in relation to the site of amputation along the body. Acta Ecol Sin 31:197–204

    Google Scholar 

  • Zattara EE, Bely AE (2011) Evolution and novel developmental trajectory: fission is distinct from regeneration in the annelid Pristina leidyi. Evol Dev 13:80–95

    PubMed  Google Scholar 

  • Zoran MJ (2010) Regeneration in Annelids. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. http://www.els.net. https://doi.org/10.1002/9780470015902.a0022103

    Chapter  Google Scholar 

  • Zwarycz AS, Nossa CW, Putnam NH et al (2015) Timing and scope of genomic expansion within annelida: evidence from homeoboxes in the genome of the earthworm Eisenia fetida. Genome Biol Evol 8:271–281

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of Medical School Research Foundation, University of Pécs (PTE-ÁOK-KA 2017/04), the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (PE). We are grateful to Krisztina Kovács (Department of Medical Microbiology and Immunology, University of Pécs, Hungary) for providing her skill and expertise in identification of the isolated microorganisms. The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Engelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Engelmann, P., Bodó, K., Najbauer, J., Németh, P. (2018). Annelida: Oligochaetes (Segmented Worms): Earthworm Immunity, Quo Vadis? Advances and New Paradigms in the Omics Era. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_6

Download citation

Publish with us

Policies and ethics