Skip to main content

Urochordata: Botryllus – Natural Chimerism and Tolerance Induction in a Colonial Chordate

  • Chapter
  • First Online:
Advances in Comparative Immunology

Abstract

Chimerism is defined as the coexistence of two or more genomes of separate origin within an individual. In placental mammals such as humans, natural chimerism develops during pregnancy between a mother and fetus and has an important role in the induction of fetal tolerance to maternal tissues. Natural chimerism between kin also occurs in colonial ascidians, the closest extant ancestors of chordates. In the ascidian, Botryllus schlosseri, some colonies fuse to create lifelong chimeric entities of two allogeneic genomes. The decision to fuse in B. schlosseri is governed by a polymorphic histocompatibility gene called the Botryllus histocompatibility factor (BHF). Colonies that share at least one BHF allele fuse upon contact, whereas colonies without any BHF alleles in common ultimately reject. Following vasculature fusion, stem cells from each histocompatible B. schlosseri colony compete to overtake germline or somatic lineages. Stem cell competition may lead to elimination of the other colony’s genome, or it may produce a chimeric colony with mixed genotypes. In this way, chimerism in B. schlosseri represents a nexus between stem cell competition, genome parasitism, and allorecognition. Here we review studies conducted over six decades that led to the discoveries of the nature of the cells that mediate chimerism in colonial ascidians and the gene that controls it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballarin L, Cima F, Sabbadin A (1995) Morula cells and histocompatibility in the colonial ascidian botryllus schlosseri. Zool Sci (Tokyo) 12(6):757–764

    Article  Google Scholar 

  • Ballarin L, Cima F, Sabbadin A (1998) Phenoloxidase and cytotoxicity in the compound ascidian botryllus schlosseri. Dev Comp Immunol 22(5–6):479–492

    Article  CAS  PubMed  Google Scholar 

  • Ballarin L, Cima F, Floreani M, Sabbadin A (2002) Oxidative stress induces cytotoxicity during rejection reaction in the compound ascidian botryllus schlosseri. Comp Biochem Physiol C Toxicol Pharmacol 133(3):411–418

    Article  PubMed  Google Scholar 

  • Bancroft FW (1903) Variation and fusion of colonies in compound ascidians. Proceedings of the California Academy of Sciences (Zoology), The Academy, San Francisco USA 3:137–186

    Google Scholar 

  • Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107(12):5465–5470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Betz AG (2010) Immunology. Have you seen your mother, baby. Science 330(6011):1635–1636

    Article  CAS  PubMed  Google Scholar 

  • Bianchi DW (2007) Robert E. Gross lecture. Fetomaternal cell trafficking: a story that begins with prenatal diagnosis and may end with stem cell therapy. J Pediatr Surg 42(1):12–18

    Article  PubMed  Google Scholar 

  • Bianchi DW (2010) From michael to microarrays: 30 years of studying fetal cells and nucleic acids in maternal blood. Prenat Diagn 30(7):622–623

    Article  PubMed  Google Scholar 

  • Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A 93(2):705–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Billingham RE, Lampkin GH, Medawar PB, Williams HL (1952) Tolerance to homograpfts, twin diagnosis, and the freemartin condition in cattle. Heredity 6(2):201–212

    Article  Google Scholar 

  • Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172(4379):603–606

    Article  CAS  PubMed  Google Scholar 

  • Boyd HC, Weissman IL, Saito Y (1990) Morphologic and genetic verification that Monterey Botryllus and Woods Hole Botryllus are the same species. Biol Bull (Woods Hole) 178(3):239–250

    Article  CAS  Google Scholar 

  • Burnet FM (1971) “Self-recognition” in colonial marine forms and flowering plants in relation to the evolution of immunity. Nature 232(5308):230–235

    Article  CAS  PubMed  Google Scholar 

  • Buss LW (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci U S A 79(17):5337–5341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chadwick-Furman NE, Weissman IL (1995a) Life histories and senescence of Botryllus schlosseri (chordata, ascidiacea) in Monterey bay. Biol Bull 189(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Chadwick-Furman NE, Weissman IL (1995b) Life history plasticity in chimaeras of the colonial ascidian botryllus schlosseri. Proc Biol Sci 262(1364):157–162

    Article  CAS  PubMed  Google Scholar 

  • Chhabra A, Ring AM, Weiskopf K, Schnorr PJ, Gordon S, Le AC, Kwon HS, Ring NG, Volkmer J, Ho PY, Tseng S, Weissman IL, Shizuru JA (2016) Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Sci Transl Med 8(351):351ra105

    Article  PubMed  PubMed Central  Google Scholar 

  • Cima F, Sabbadin A, Ballarin L (2004) Cellular aspects of allorecognition in the compound ascidian botryllus schlosseri. Dev Comp Immunol 28(9):881–889

    Article  CAS  PubMed  Google Scholar 

  • Cima F, Sabbadin A, Zaniolo G, Ballarin L (2006) Colony specificity and chemotaxis in the compound ascidian botryllus schlosseri. Comp Biochem Physiol A Mol Integr Physiol 145(3):376–382

    Article  PubMed  Google Scholar 

  • Corey DM, Rosental B, Kowarsky M, Sinha R, Ishizuka KJ, Palmeri KJ, Quake SR, Voskoboynik A, Weissman IL (2016) Developmental cell death programs license cytotoxic cells to eliminate histocompatible partners. Proc Natl Acad Sci U S A 113(23):6520–6525

    Article  CAS  Google Scholar 

  • De Tomaso AW, Saito Y, Ishizuka KJ, Palmeri KJ, Weissman IL (1998) Mapping the genome of a model protochordate. I. A low resolution genetic map encompassing the fusion/histocompatibility (Fu/HC) locus of botryllus schlosseri. Genetics 149(1):277–287

    PubMed  PubMed Central  Google Scholar 

  • De Tomaso AW, Nyholm SV, Palmeri KJ, Ishizuka KJ, Ludington WB, Mitchel K, Weissman IL (2005) Isolation and characterization of a protochordate histocompatibility locus. Nature 438(7067):454–459

    Article  PubMed Central  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature (London) 439(7079):965–968

    Article  CAS  Google Scholar 

  • van Dijk BA, Boomsma DI, de Man AJ (1996) Blood group chimerism in human multiple births is not rare. Am J Med Genet 61(3):264–268

    Article  PubMed  Google Scholar 

  • Eikmans M, van Halteren AG, van Besien K, van Rood JJ, Drabbels JJ, Claas FH (2014) Naturally acquired microchimerism: implications for transplantation outcome and novel methodologies for detection. Chimerism 5(2):24–39

    Article  PubMed Central  PubMed  Google Scholar 

  • Gassparini F, Manni L, Cima F, Zaniolo G, Burighel P, Caicci F, Franchi N, Schiavon F, Rigon F, Campagna D, Ballarin L (2014) Coordination between sexual and asexual reproduction: lessons from the colonial ascidian Botryllus schlosseri. Genesis 53(1):105–120

    Article  PubMed  Google Scholar 

  • Gengozian N, Batson JS, Eide P (1964) Hematologic and cytogenic evidence for chimerism in the marmoset, tamarinus nigricollis. sam-tdr-64-61. AMD TR Rep:1–10

    Google Scholar 

  • Grosberg RK (1988) The evolution of allorecognition specificity in clonal invertebrates. Q Rev Biol 63:377–412

    Article  Google Scholar 

  • Grosberg RK, Quinn JF (1986) The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature 322(6078):456–459

    Article  Google Scholar 

  • Herzenberg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM (1979) Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci U S A 76(3):1453–1455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano M, Das S, Guo P, Cooper MD (2011) The evolution of adaptive immunity in vertebrates. Adv Immunol 109:125–157

    Article  CAS  PubMed  Google Scholar 

  • Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351(7):657–667

    Article  CAS  PubMed  Google Scholar 

  • Johnson KL, Stroh H, Tadesse S, Norwitz ER, Richey L, Kallenbach LR, Bianchi DW (2012) Fetal cells in the murine maternal lung have well-defined characteristics and are preferentially located in alveolar septum. Stem Cells Dev 21(1):158–165

    Article  CAS  PubMed  Google Scholar 

  • Kallenbach LR, Johnson KL, Bianchi DW (2011) Fetal cell microchimerism and cancer: a nexus of reproduction, immunology, and tumor biology. Cancer Res 71(1):8–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laird DJ, De Tomaso AW, Weissman IL (2005) Stem cells are units of natural selection in a colonial ascidian. Cell 123(7):1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Lakkis FG, Dellaporta SL, Buss LW (2008) Allorecognition and chimerism in an invertebrate model organism. Organogenesis 4(4):236–240

    Article  PubMed Central  PubMed  Google Scholar 

  • Litman GW, Dishaw LJ (2013) Histocompatibility: clarifying fusion confusion. Curr Biol 23(20):R934–R935

    Article  CAS  PubMed  Google Scholar 

  • Little C (1941) The genetics of tumor transplantation. In: Snell G (ed) Biology of the laboratory mouse. Dover, New York, pp 279–309

    Google Scholar 

  • Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11(7):237–244

    Article  CAS  PubMed  Google Scholar 

  • Loubiere LS, Lambert NC, Flinn LJ, Erickson TD, Yan Z, Guthrie KA, Vickers KT, Nelson JL (2006) Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Lab Investig 86(11):1185–1192

    CAS  PubMed  Google Scholar 

  • Majeti R, Becker MW, Tian Q, Lee TL, Yan X, Liu R, Chiang JH, Hood L, Clarke MF, Weissman IL (2009) Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci U S A 106(9):3396–3401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manni L, Gasparini F, Hotta K, Ishizuka KJ, Ricci L, Tiozzo S, Voskoboynik A, Dauga D (2014) Ontology for the asexual development and anatomy of the colonial chordate botryllus schlosseri. PLoS One 9(5):e96434

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyamoto T, Weissman IL, Akashi K (2000) AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A 97(13):7521–7526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mold JE, Michaelsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, Lee TH, Nixon DF, McCune JM (2008) Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322(5907):1562–1565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mold JE, Venkatasubrahmanyam S, Burt TD, Michaelsson J, Rivera JM, Galkina SA, Weinberg K, Stoddart CA, McCune JM (2010) Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330(6011):1695–1699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukai H (1967) Experimental alteration of fusibility in compound ascidians. Sci Rep Tokyo Kyoiku Daigaku 13B:51–73

    Google Scholar 

  • Mukai H, Watanabe H (1975) Distribution of fusion incompatibility types in natural populations of the compound ascidian botryllus primigenus. Proc Jpn Acad 51:44–47

    Article  Google Scholar 

  • Nydam ML, Netuschil N, Sanders E, Langenbacher A, Lewis DD, Taketa DA, Marimuthu A, Gracey AY, De Tomaso AW (2013) The candidate histocompatibility locus of a basal chordate encodes two highly polymorphic proteins. PLoS One 8(6):e65980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O'Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, Roberts IA, Fisk NM (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364(9429):179–182

    Article  PubMed  Google Scholar 

  • Oka H (ed) (1970) Colony specificity in compound ascidians.The genetic control of fusibility. In: Yukawa H (ed) Profiles of japanese science and scientists. tokyo

    Google Scholar 

  • Oka H, Watanabe H (1957) Colony-specificity in compound ascidians as tested by fusion experiments. Proc Jpn Acad 33(10):657–659

    Article  Google Scholar 

  • Oka H, Watanabe H (1960) Problems of colony specificity in compound ascidians. Bull Mar Biol Stat Asamushi 10:153–155

    Google Scholar 

  • Oka H, Watanabe H (1967) Problems of colony specificity, with special reference to the fusibility of ascidians. Kagaku (Tokyo) 37:307–313

    Google Scholar 

  • Oren M, Douek J, Fishelson Z, Rinkevich B (2007) Identification of immune-relevant genes in histoincompatible rejecting colonies of the tunicate botryllus schlosseri. Dev Comp Immunol 31(9):889–902

    Article  CAS  PubMed  Google Scholar 

  • Oren M, Escande ML, Paz G, Fishelson Z, Rinkevich B (2008) Urochordate histoincompatible interactions activate vertebrate-like coagulation system components. PLoS One 3(9):e3123

    Article  PubMed Central  PubMed  Google Scholar 

  • Oren M, Paz G, Douek J, Rosner A, Fishelson Z, Goulet TL, Henckel K, Rinkevich B (2010) Rejected' vs. 'rejecting' transcriptomes in allogeneic challenged colonial urochordates. Mol Immunol 47(11–12):2083–2093

    Article  CAS  PubMed  Google Scholar 

  • Owen RD (1945) Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102(2651):400–401

    Article  CAS  PubMed  Google Scholar 

  • Owen RD, Wood HR, Foord AG, Sturgeon P, Baldwin LG (1954) Evidence for actively acquired tolerance to rh antigens. Proc Natl Acad Sci U S A 40(6):420–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pancer Z, Gershon H, Rinkevich B (1995) Coexistence and possible parasitism of somatic and germ cell lines in chimeras of the colonial urochordate botryllus schlosseri. Biol Bull (Woods Hole) 189(2):106–112

    Article  CAS  Google Scholar 

  • Rinkevich B (2005) Natural chimerism in colonial urochordates. J Exp Mar Biol Ecol 322(2):93–109

    Article  Google Scholar 

  • Rinkevich B (2011) Quo vadis chimerism? Chimerism 2(1):1–5

    Article  PubMed Central  PubMed  Google Scholar 

  • Rinkevich B, Weissman IL (1987) Chimeras in colonial invertebrates a synergistic symbiosis or somatic-cell and germ-cell parasitism? Symbiosis 4(1–3):117–134

    Google Scholar 

  • Rinkevich B, Weissman IL (1992) Chimeras vs genetically homogeneous individuals: potential fitness costs and benefits. Oikos 63:119–124

    Article  Google Scholar 

  • Rinkevich B, Yankelevich I (2004) Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. J Exp Biol 207(Pt 20):3531–3536

    Article  PubMed  Google Scholar 

  • Rinkevich B, Weissman IL, Shapira M (1994) Alloimmune hierarchies and stress-induced reversals in the resorption of chimeric protochordate colonies. Proceedings of the Royal Society of London.Series B. Biol Sci 258(1353):215–220

    Article  Google Scholar 

  • Rinkevich B, Douek J, Rabinowitz C, Paz G (2012) The candidate Fu/HC gene in botryllusschlosseri (urochordata) and ascidians' historecognition--an oxymoron? Dev Comp Immunol 36(4):718–727

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich Y, Voskoboynik A, Rosner A, Rabinowitz C, Paz G, Oren M, Douek J, Alfassi G, Moiseeva E, Ishizuka KJ et al (2013) Repeated, long-term cycling of putative stem cells between niches in a basal chordate. Dev Cell 24(1):76–88

    Article  CAS  PubMed  Google Scholar 

  • Ross CN, French JA, Orti G (2007) Germ-line chimerism and paternal care in marmosets (callithrix kuhlii). Proc Natl Acad Sci U S A 104(15):6278–6282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi DJ, Bryder D, Weissman IL (2007) Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol 42(5):385–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696

    Article  CAS  PubMed  Google Scholar 

  • Sabbadin A (1962) Le basi geneticha della capacita di fusion fra colonies in Botryllus schlosseri (Ascidiacea). Rend Accad Naz Lincei Ser 32:1031–1035

    Google Scholar 

  • Sabbadin A (1982) Formal genetics of ascidians. Am Zool 22(4):765–773

    Article  Google Scholar 

  • Sabbadin A, Astorri C (1988) Chimeras and histocompatibility in the colonial ascidian botryllus schlosseri. Dev Comp Immunol 12(4):737–747

    Article  CAS  PubMed  Google Scholar 

  • Sabbadin A, Zaniolo G (1979) Sexual differentiation and germ cell transfer in the colonial ascidian botryllus schlosseri. J Exp Zool 207(2):289–304

    Article  Google Scholar 

  • Sabbadin A, Zaniolo G, Ballarin L (1992) Genetic and cytological aspects of histocompatibility in ascidians. Ital J Zool 59(2):167–173

    Google Scholar 

  • Saito Y, Hirose E, Watanabe H (1994) Allorecognition in compound ascidians. Int J Dev Biol 38(2):237–247

    CAS  PubMed  Google Scholar 

  • Scofield VL, Nagashima LS (1983) Morphology and genetics of rejection reactions between oozooids from the tunicate botryllus schlosseri. Biol Bull 165(3):733–744

    Article  PubMed  Google Scholar 

  • Scofield VL, Schlumpberger JM, West LA, Weissman IL (1982) Protochordate allo recognition is controlled by a major histo compatibility complex-like gene system. Nature (London) 295(5849):499–502

    Article  CAS  Google Scholar 

  • Snell GD, Higgins GF (1951) Alleles at the histocompatibility-2 locus in the mouse as determined by tumor transplantation. Genetics 36(3):306–310. PMCID: PMC1209522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoner DS, Weissman IL (1996) Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci U S A 93(26):15254–15259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stoner DS, Rinkevich B, Weissman IL (1999) Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc Natl Acad Sci U S A 96(16):9148–9153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taketa DA, Nydam ML, Langenbacher AD, Rodriguez D, Sanders E, De Tomaso AW (2015) Molecular evolution and in vitro characterization of Botryllus histocompatibility factor. Immunogenetics 67:605–623

    Article  CAS  PubMed  Google Scholar 

  • Taneda Y (1985) Simultaneous occurrence of fusion and nonfusion reaction in two colonies in contact of the compound ascidian Botryllus priminegus. Dev Comp Immunol 9:371–375

    Article  CAS  PubMed  Google Scholar 

  • Tippett P (1983) Blood group chimeras. A review. Vox Sang 44(6):333–359

    CAS  PubMed  Google Scholar 

  • Ueno H, Turnbull BB, Weissman IL (2009) Two-step oligoclonal development of male germ cells. Proc Natl Acad Sci U S A 106(1):175–180

    Article  CAS  PubMed  Google Scholar 

  • Van Rood JJ, Eernisse JG, Van Leeuwen A (1958) Leucocyte antibodies in sera from pregnant women. Nature 181(4625):1735–1736

    Article  Google Scholar 

  • Voskoboynik A, Soen Y, Rinkevich Y, Rosner A, Ueno H, Reshef R, Ishizuka KJ, Palmeri KJ, Moiseeva E, Rinkevich B et al (2008) Identification of the endostyle as a stem cell niche in a colonial chordate. Cell Stem Cell 3(4):456–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voskoboynik A, Rinkevich B, Weissman IL (2009) Stem cells, chimerism and tolerance: lessons from mammals and ascidians. In: Stem cells in marine organisms. Springer, Dordrecht, Netherlands, p 281

    Chapter  Google Scholar 

  • Voskoboynik A, Newman AM, Corey DM, Sahoo D, Pushkarev D, Neff NF, Passarelli B, Koh W, Ishizuka KJ, Palmeri KJ et al (2013a) Identification of a colonial chordate histocompatibility gene. Science 341(6144):384–387

    Article  CAS  PubMed  Google Scholar 

  • Voskoboynik A, Neff NF, Sahoo D, Newman AM, Pushkarev D, Koh W, Passarelli B, Fan HC, Mantalas GL, Palmeri KJ et al (2013b) The genome sequence of the colonial chordate, botryllus schlosseri. elife 2:e00569

    Article  PubMed Central  PubMed  Google Scholar 

  • Watanabe H, Taneda Y (1982) Self or non—self recognition in compound ascidians. Am Zool 22(4):775–782

    Article  Google Scholar 

  • Weissman I (2005a) Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 294(11):1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Weissman IL (2005b) Normal and neoplastic stem cells. Novartis Found Symp 265:35

    PubMed  Google Scholar 

  • Weissman IL (2014) Clonal origins of the hematopoietic system: the single most elegant experiment. J Immunol 192(11):4943–4944

    Article  CAS  PubMed  Google Scholar 

  • Weissman IL (2015) Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development. Proc Natl Acad Sci U S A 112(29):8922–8928. PMCID: PMC4517284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weissman IL, Shizuru JA (2008) The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112(9):3543–3553. PMCID: PMC2574516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weissman IL, Saito Y, Rinkevich B (1990) Allorecognition histocompatibility in a protochordate species: is the relationship to MHC somatic or structural? Immunol Rev 113:227–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

In memory of Professor Yasunori Saito, who established the homozygous and heterozygous B. schlosseri lines for distinct fusibility histocompatibility alleles. We thank Katherine Ishizuka and Karla Palmeri for raising, crossing, and maintaining these lines and an intensive Botryllus frozen sample collection in our lab for three decades. This study was supported by National Institutes of Health Grants 1R01AG037968 and R01GM100315 awarded to I.L.W. and A.V. and the Virginia and D. K. Ludwig Fund for Cancer Research awarded to I.L.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet Voskoboynik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voskoboynik, A., Newman, A.M., Kowarsky, M., Weissman, I.L. (2018). Urochordata: Botryllus – Natural Chimerism and Tolerance Induction in a Colonial Chordate. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_14

Download citation

Publish with us

Policies and ethics