Skip to main content

Echinodermata: The Complex Immune System in Echinoderms

  • Chapter
  • First Online:
Book cover Advances in Comparative Immunology

Abstract

The Echinodermata are an ancient phylum of benthic marine invertebrates with a dispersal-stage planktonic larva. These animals have innate immune systems characterized initially by clearance of foreign particles, including microbes, from the body cavity of both larvae and adults, and allograft tissue rejection in adults. Immune responsiveness is mediated by a variety of adult coelomocytes and larval mesenchyme cells. Echinoderm diseases from a range of pathogens can lead to mass die-offs and impact aquaculture, but some individuals can recover. Genome sequences of several echinoderms have identified genes with immune function, including expanded families of Toll-like receptors, NOD-like receptors, and scavenger receptors with cysteine-rich domains, plus signaling pathways and cytokines. The set of transcription factors that regulate proliferation and differentiation of the cellular immune system are conserved and indicate the ancestral origins of hematopoiesis. Both larval and adult echinoderms are in constant contact with potential pathogens in seawater, and they respond to infection by phagocytosis and encapsulation, and employ proteins that function in immune detection and response. Antipathogen responses include activation of the SpTransformer genes, a complement system, and the production of many types of antimicrobial peptides. Echinoderms have homologues of the recombinase activating genes plus all associated genes that function in vertebrates for immunoglobulin gene family rearrangement, although their gene targets are unknown. The echinoderm immune system has been characterized as unexpectedly complex, robust, and flexible. Many echinoderms have very long life-spans that correlate with an excellent capacity for cell damage repair. In many marine ecosystems, echinoderms are keystone predators and herbivores, and therefore are species that can serve as optimal sentinels of environmental health. Coelomocytes can be employed in sensor systems to test for the presence of marine pollutants. When Elie Metchnikoff inserted a rose prickle into a larval sea star and observed chemotaxis, phagocytosis, and encapsulation by the mesenchyme cells, he initiated not only the field of immunology but also that of comparative immunology, of which the echinoderms have been an important part.

The original version of this chapter was revised. A correction to this chapter can be found at https://doi.org/10.1007/978-3-319-76768-0_32

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

References

  • Al-Sharif WZ, Sunyer JO, Lambris JD, Smith LC (1998) Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol 160:2983–2997

    CAS  PubMed  Google Scholar 

  • Anderluh G, Kisovec M, Kraševec N, Gilbert RJC (2014) Distribution of MACPF/CDC proteins. Subcell Biochem 80:7–30

    Article  CAS  PubMed  Google Scholar 

  • Andersen JH, Murray C, Larsen MM, Green N, Høgåsen T, Dahlgren E, Garnaga-Budrė G, Gustavson K, Haarich M, Kallenbach EM, Mannio J, Strand J, Korpinen S (2016) Development and testing of a prototype tool for integrated assessment of chemical status in marine environments. Environ Monit Assess 188(2):115

    Article  PubMed  Google Scholar 

  • Ariki S, Takahara S, Shibata T, Fukuoka T, Ozaki A, Endo Y, Fujita T, Koshiba T, Kawabata S-I (2008) Factor C acts as a lipopolysaccharide-responsive C3 convertase in horseshoe crab complement activation. J Immunol 181:7994–8001

    Article  CAS  PubMed  Google Scholar 

  • Arizza V, Giaramita FT, Parrinello D, Cammarata M, Parrinello N (2007) Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes. Comp Biochem Physiol A Mol Integr Physiol 147:389–394

    Article  PubMed  CAS  Google Scholar 

  • Arnone MI, Byrne M, Martinez P (2015) Echinodermata. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 6: deuterostomia. Springer-Verlag, Wein

    Google Scholar 

  • Bak R, Carpay M, de Ruyter van Steveninck E (1984) Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curaqao. Mar Ecol 1:105–108

    Article  Google Scholar 

  • Bates A, Hilton B, Harley C (2009) Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. Dis Aquat Org 86:245–251

    Article  Google Scholar 

  • Bauer JC, Agerter CJ (1987) Isolation of bacteria pathogenic for the sea urchin Diadema antillarum (Echinodermata: Echinoidea). Bull Mar Sci 40:161–165

    Google Scholar 

  • Bauer JC, Agerter CJ (1994) Isolation of potentially pathogenic bacterial flora from tropical sea urchins in selected West Atlantic and East Pacific sites. Bull Mar Sci 55:142–150

    Google Scholar 

  • Beauregard KA, Truong NT, Zhang H, Lin W, Beck G (2001) The detection and isolation of a novel antimicrobial peptide from the echinoderm, Cucumaria frondosa. Adv Exp Med Biol 484:55–62

    Google Scholar 

  • Becker PT, Gillan DC, Eeckhaut I (2007) Microbiological study of the body wall lesions of the echinoid Tripneustes gratilla. Dis Aquat Org 77(1):73–82

    Article  Google Scholar 

  • Becker PT, Egea E, Eeckhaut I (2008) Characterization of the bacterial communities associated with the bald sea urchin disease of the echinoid Paracentrotus lividus. J Invertebr Pathol 98(2):136–147

    Article  CAS  PubMed  Google Scholar 

  • Beddingfield SD, McClintock JB (2000) Demographic characteristics of Lytechinus variegatus (Echinoidea: Echinodermata) from three habitats in North Florida Bay, Gulf of Mexico. Mar Ecol 21:17–40

    Article  Google Scholar 

  • Bertheussen K (1981a) Endocytosis by echinoid phagocytes in vitro. II. Mechanisms of endocytosis. Dev Comp Immunol 5:557–564

    Article  CAS  PubMed  Google Scholar 

  • Bertheussen K (1981b) Endocytosis by echinoid phagocytosis in vitro. I. Recognition of foreign matter. Dev Comp Immunol 5:241–250

    Article  CAS  PubMed  Google Scholar 

  • Bertheussen K (1982) Receptors for complement on echinoid phagocytes. II. Purified human complement mediates echinoid phagocytosis. Dev Comp Immunol 6:635–642

    Article  CAS  PubMed  Google Scholar 

  • Bertheussen K (1983) Complement-like activity in sea urchin coelomic fluid. Dev Comp Immunol 7:21–31

    Article  CAS  PubMed  Google Scholar 

  • Bertheussen K, Seljelid R (1978) Echinoid phagocytes in vitro. Exp Cell Res 111:401–412

    Article  CAS  PubMed  Google Scholar 

  • Bertheussen K, Seljelid R (1982) Receptors for complement on echinoid phagocytes. I. The opsonic effect of vertebrae sera on echinoid phagocytosis. Dev Comp Immunol 6:423–431

    Article  CAS  PubMed  Google Scholar 

  • Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22(11):2275–2284

    Article  CAS  PubMed  Google Scholar 

  • Blanchette C, Richards D, Engle J, Broitman B, Gaines S (2005) Regime shifts, community change and population booms of keystone predators at the Channel Islands. In: Proceedings of the California Islands Symposium

    Google Scholar 

  • Blois J, Zarnetske P, Fitzpatrick M, Finnegan S (2013) Climate change and the past, present, and future of biotic interactions. Science 341:499–504

    Article  CAS  PubMed  Google Scholar 

  • Bodnar AG, Coffman JA (2016) Maintenance of somatic regenerative capacity with age in short- and long-lived species of sea urchins. Aging Cell 15(4):778–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61(7):2978–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boolootian RA, Giese AC (1958) Coelomic corpuscles of echinoderms. Biol Bull 115:53–63

    Article  Google Scholar 

  • Boolootian RA, Giese AC (1959) Clotting of echinoderm coelomic fluid. J Exp Zool 140:207–229

    Article  CAS  PubMed  Google Scholar 

  • Boraschi D, Costantino L, Italiani P (2012) Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine 7:121–131

    Article  CAS  PubMed  Google Scholar 

  • Böttger SA, McClintock JB (2009) The effects of chronic inorganic and organic phosphate exposure on bactericidal activity of the coelomic fluid of the sea urchin sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Comp Biochem Physiol Part C 150:39–44

    Google Scholar 

  • Brockton V, Henson JH, Raftos DA, Majeske AJ, Kim Y-O, Smith LC (2008) Localization and diversity of 185/333 proteins from the purple sea urchin—unexpected protein-size range and protein expression in a new coelomocyte type. J Cell Sci 121(3):339–348

    Article  CAS  PubMed  Google Scholar 

  • Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38(3):217–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The antibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42(1):154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley KM, Rast JP (2011) Characterizing immune receptors from new genome sequences. Methods Mol Biol 748:273–298

    Article  CAS  PubMed  Google Scholar 

  • Buckley KM, Rast JP (2012) Dynamic evolution of Toll-like receptor multigene families in echinoderms. Front Immunol 3:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckley KM, Rast JP (2015) Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. Dev Comp Immunol 49(1):179–189

    Article  CAS  PubMed  Google Scholar 

  • Buckley KM, Smith LC (2007) Extraordinary diversity among members of the large gene family, 185/333, from the purple sea urchin, Strongylocentrotus purpuratus. BMC Mol Biol 8:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckley KM, Munshaw S, Kepler T, Smith LC (2008a) The 185/333 gene family is a rapidly diversifying host-defense gene cluster in the purple sea urchin Strongylocentrotus purpuratus. J Mol Biol 379(4):912–928

    Article  CAS  PubMed  Google Scholar 

  • Buckley KM, Terwilliger DP, Smith LC (2008b) Sequence variations in 185/333 messages from the purple sea urchin suggest post-transcriptional modifications to increase immune diversity. J Immunol 181:8585–8594

    Article  CAS  PubMed  Google Scholar 

  • Buckley KM, Ho ECH, Hibino T, Schrankel CS, Schuh NW, Wang G, Rast JP (2017) IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva. elife 6:e23481

    Article  PubMed  PubMed Central  Google Scholar 

  • Burge C, Eakin C, Friedman C, Froelich B, Hershberger P, Hofmann E, Petes L, Prager K, Weil E, Willis B, Ford S, Harvell C (2014) Climate change influences on marine infectious diseases: implications for management and society. Annu Rev Mar Sci 6:249–277

    Article  Google Scholar 

  • Calestani C, Rogers DJ (2010) Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase. Dev Biol 340(2):249–255

    Article  CAS  PubMed  Google Scholar 

  • Calestani C, Rast JP, Davidson EH (2003) Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 130(19):4587–4596

    Article  CAS  PubMed  Google Scholar 

  • Cameron RA, Samanta M, Yuan A, He D, Davidson E (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37(suppl 1):D750–D754

    Article  CAS  PubMed  Google Scholar 

  • Canicatti C, D’Ancona G (1989) Cellular aspects of Holothuria polii immune response. J Invertebr Pathol 53:152–158

    Article  Google Scholar 

  • Carmona LM, Fugmann SD, Schatz DG (2016) Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination. Genes Dev 30:909–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter RC (1988) Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. PNAS 85(2):511–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter RC (1990) Mass mortality of Diadema antillarum. 1. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar Biol 104(1):67–77

    Article  Google Scholar 

  • Castillo MG, Goodson MS, McFall-Ngai M (2009) Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Dev Comp Immunol 33(1):69–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chia F, Xing J (1996) Echinoderm coelomocytes. Zool Stud 35:231–254

    Google Scholar 

  • Choe J, Kelker MS, Wilson IA (2005) Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309(5734):581–585

    Article  CAS  PubMed  Google Scholar 

  • Clow LA, Gross PS, Shih CS, Smith LC (2000) Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide. Immunogenetics 51(12):1021–1033

    Article  CAS  PubMed  Google Scholar 

  • Clow LA, Raftos DA, Gross PS, Smith LC (2004) The sea urchin complement homologue, SpC3, functions as an opsonin. J Exp Biol 207:2147–2155

    Article  CAS  PubMed  Google Scholar 

  • Coffaro KA, Hinegardner RT (1977) Immune response in the sea urchin Lytechinus pictus. Science 197(4311):1389–1390

    Article  CAS  PubMed  Google Scholar 

  • Coleman J, Inukai M, Inouye M (1985) Dual functions of the signal peptide in protein transfer across the membrane. Cell 43(1):351–360

    Article  CAS  PubMed  Google Scholar 

  • Connon RE, Geist J, Werne I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Biosensors 12(9):12741–12771

    CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • Coteur G, DeBecker G, Warnau M, Jangoux M, Dubois P (2002a) Differentiation of immune cells challenged by bacteria in the common European starfish, Asterias rubens (Echinodermata). Eur J Cell Biol 81(7):413–418

    Article  PubMed  Google Scholar 

  • Coteur G, Warnau M, Jangoux M, Dubois P (2002b) Reactive oxygen species (ROS) production by amoebocytes of Asterias rubens (Echinodermata). Fish Shellfish Immunol 12(3):187–200

    Article  CAS  PubMed  Google Scholar 

  • Coteur G, Gosselin P, Wantier P, Chambost-Manciet Y, Danis B, Pernet P, Warnau M, Dubois P (2003a) Echinoderms as bioindicators, bioassays, and impact assessment tools of sediment-associated metals and PCBs in the North Sea. Arch Environ Contam Toxicol 45(2):190–202

    Article  CAS  PubMed  Google Scholar 

  • Coteur G, Gillan D, Joly G, Pernet P, Dubois P (2003b) Field contamination of the starfish Asterias rubens by metals. Part 2: effects on cellular immunity. Environ Toxicol Chem 22(9):2145–2151

    Article  CAS  PubMed  Google Scholar 

  • Danis B, Goriely S, Dubois P, Fowler SW, Flamand V, Warnau M (2004a) Contrasting effects of coplanar versus noncoplanar PCB congeners on immunomodulation and CYP1A levels (determined using an adapted ELISA method) in the common sea star Asterias rubens L. Aquat Toxicol 69(4):371–383

    Article  CAS  PubMed  Google Scholar 

  • Danis B, Cotret O, Teyssié JL, Fowler SW, Warnau M (2004b) Coplanar PCB 77 uptake kinetics in the sea star Asterias rubens and subsequent effects on reactive oxygen species (ROS) production and levels of cytochrome P450 immunopositive proteins (CYP1A-IPP). Mar Ecol Prog Ser 279:117–128

    Article  CAS  Google Scholar 

  • Danis B, Wantier P, Flammang R, Pernet P, Chambost-Manciet Y, Coteur G, Warnau M, Dubois P (2006) Bioaccumulation and effects of PCBs and heavy metals in sea stars (Asterias rubens, L.) from the North Sea: a small scale perspective. Sci Total Environ 356(1–3):275–289

    Article  CAS  PubMed  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Schilstra MJ, Clarke PJ, Rust AG, Pan Z, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev Biol 246(1):162–190

    Article  CAS  PubMed  Google Scholar 

  • Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23(43):7233–7246

    Article  CAS  PubMed  Google Scholar 

  • Davidson CR, Best NM, Francis JW, Cooper EL, Wood TC (2008) Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Dev Comp Immunol 32(6):608–612

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock REW (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16(5):580–589

    Article  PubMed  CAS  Google Scholar 

  • de Latour RA, Amer LS, Papanstasiou EA, Bishop BM, van Hoek ML (2010) Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochem Biophys Res Commun 396:825–830

    Article  PubMed  CAS  Google Scholar 

  • De Pooter R (2010) E proteins and the regulation of early lymphocyte development. Immunol Rev 238:93–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Dempsey CE, Ueno S, Avison MB (2003) Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42(2):402–409

    Article  CAS  PubMed  Google Scholar 

  • Deng H, He C, Zhou Z, Liu C, Tan K, Wang N, Jiang B, Gao X, Liu W (2009) Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture 287(1–2):18–27

    Article  CAS  Google Scholar 

  • Dev S, Robinson JJ (2014) Comparative biochemical analysis of the major yolk protein in the sea urchin egg and coelomic fluid. Dev Growth Differ 56(6):480–490

    Article  CAS  PubMed  Google Scholar 

  • Dewan PC, Anantharaman A, Chauhan VS, Sahal D (2009) Antimicrobial action of prototypic amphipathic cationic decapeptides and their branched dimers. Biochemistry 48(24):5642–5657

    Article  CAS  PubMed  Google Scholar 

  • Dheilly NM, Nair SV, Smith LC, Raftos DA (2009) Highly variable immune response proteins (185/333) from the sea urchin, Strongylocentrotus purpuratus: proteomic analysis identifies diversity within and between individuals. J Immunol 182:2203–2212

    Article  CAS  PubMed  Google Scholar 

  • Dheilly NM, Birch D, Nair SV, Raftos DA (2011a) Ultrastructural localization of highly variable 185/333 immune response proteins in the coelomocytes of the sea urchin, Heliocidaris erythrogramma. Immunol Cell Biol 89:861–869

    Article  CAS  PubMed  Google Scholar 

  • Dheilly NM, Haynes PA, Bove U, Nair SV, Raftos DA (2011b) Comparative proteomic analysis of a sea urchin (Heliocidaris erythrogramma) antibacterial response revealed the involvement of apextrin and calreticulin. J Invertebr Pathol 106(2):223–229

    Article  CAS  PubMed  Google Scholar 

  • Dheilly NM, Haynes PA, Raftos DA, Nair SV (2012) Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma. Dev Comp Immunol 37(2):243–256

    Article  CAS  PubMed  Google Scholar 

  • Dheilly NM, Raftos DA, Haynes PA, Smith LC, Nair SV (2013) Shotgun proteomics of coelomic fluid from the purple sea urchin, Strongylocentrotus purpuratus. Dev Comp Immunol 40(1):35–50

    Article  CAS  PubMed  Google Scholar 

  • Dheilly NM, Coen A, Raftos DA, Benjamin G, Christoph G, Louis DP (2014) No more non-model species: the promise of next generation sequencing for comparative immunology. Dev Comp Immunol 45(1):56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dishaw LJ, Smith SL, Bigger CH (2005) Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics 57(7):535–548

    Article  CAS  PubMed  Google Scholar 

  • Du C, Anderson A, Lortie M, Parsons R, Bodnar A (2013) Oxidative damage and cellular defense mechanisms in sea urchin models of aging. Free Radic Biol Med 63:254–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T (2010) Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 137(2):223–235

    Article  CAS  PubMed  Google Scholar 

  • Dungan ML, Miller TE, Thomson DA (1982) Catastrophic decline of a top carnivore in the gulf of California rocky intertidal zone. Science 216(4549):989–991

    Article  CAS  PubMed  Google Scholar 

  • Ebert TA (2007) Growth and survival of post-settlement sea urchins. In: Lawrence JM (ed) Edible sea urchins: biology and ecology, 2nd edn. Elsevier, Amsterdam, pp 95–134

    Chapter  Google Scholar 

  • Ebert TA (2008) Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus. Exp Gerontol 43:734–738

    Article  PubMed  Google Scholar 

  • Ebert TA (2010) Demographic patterns of the purple sea urchin Strongylocentrotus purpuratus along a latitudinal gradient, 1985–1987. Mar Ecol Prog Ser 406:105–120

    Article  Google Scholar 

  • Ebert TA, Southon JR (2003) Red sea urchins (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb 14carbon. Fish Bull 101(4):915–922

    Google Scholar 

  • Ebert TA, Russell MP, Gamba G, Bodnar A (2008) Growth, survival, and longevity estimates for the rock-boring sea urchin Echinometra lucunter lucunter (Echinodermata, Echinoidea) in Bermuda. Bull Mar Sci 82(3):381–403

    Google Scholar 

  • Eckert GJ, Engle J, Kushner D (1999) Sea star disease and population declines at the Channel Islands. In: Proceedings of the fifth California Island symposium, US Minerals Management Service, pp 390–394

    Google Scholar 

  • Edds KT (1977) Dynamic aspects of filopodial formation by reorganization of microfilaments. J Cell Pathol 73:479–491

    CAS  Google Scholar 

  • Edds KT (1993) Cell biology of echinoid coelomocytes. Diversity and characterization of cell types. J Invertebr Biol 61:173–178

    Article  Google Scholar 

  • Edmunds P, Carpenter R (2001) Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc Natl Acad Sci U S A 98(9):5067–5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Bibany AH, Bodnar AG, Reinardy HC (2014) Comparative DNA damage and repair in echinoderm coelomocytes exposed to genotoxicants. PLoS One 9(9):e107815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eliseikina MG, Magarlamov TY (2002) Coelomocyte morphology in the holothurians Apostichopus japonicus (Aspidochirota: Stichopodidae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Russ J Mar Biol 28:197–202

    Article  Google Scholar 

  • Ellis RP, Parry H, Spicer JI, Hutchinson TH, Pipe RK, Widdicombe S (2011) Immunological function in marine invertebrates: responses to environmental perturbation. Fish Shellfish Immunol 30(6):1209–1222

    Article  CAS  PubMed  Google Scholar 

  • Endean R (1966) The coelomocytes and coelomic fluids. In: Boolootian RA (ed) Physiology of echinodermata. Intersciences, New York, pp 301–328

    Google Scholar 

  • Engle J, Halvorson W, Maender G (1994) Perspectives on the structure and dynamics of nearshore marine assemblages of the California Channel Islands. In: The fourth California channel islands symposium: update on the status of resources, Santa Barbara

    Google Scholar 

  • Falugi C, Aluigi MG, Chiantore MC, Privitera D, Ramoino P, Gatti MA, Fabrizi A, Pinsino A, Matranga V (2012) Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar Environ Res 76:114–121

    Article  CAS  PubMed  Google Scholar 

  • Fey PD (2010) Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr Opin Microbiol 13(5):610–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch CE (1990) Longevity, senescence, and the genome. University of Chicago Press, Chicago, pp 206–226

    Google Scholar 

  • Finch CE, Austad SN (2001) History and prospects: symposium on organisms with slow aging. Exp Gerontol 36:593–597

    Article  CAS  PubMed  Google Scholar 

  • Fontaine AR, Lambert P (1977) The fine structure of the leucocytes of the holothurian, Cucumaria miniata. Can J Zool 55:1530–1544

    Article  CAS  PubMed  Google Scholar 

  • Franchi N, Ballarin L (2014) Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. Dev Comp Immunol 46:430–438

    Article  CAS  PubMed  Google Scholar 

  • Franchi N, Ballarin L (2017) Morula cells as key hemocytes of the lectin pathway of complement activation in the colonial tunicate Botryllus schlosseri. Fish Shellfish Immunol 63:157–164

    Article  CAS  Google Scholar 

  • Franco CF, Santos R, Coelho AV (2011) Proteome characterization of sea star coelomocytes—the innate immune effector cells of echinoderms. Proteomics 11(17):3587–3592

    Article  CAS  PubMed  Google Scholar 

  • Fuess LE, Eisenlord ME, Closek CJ, Tracy AM, Mauntz R, Gignoux-Wolfsohn S, Moritsch MM, Yoshioka R, Burge CA, Harvell CD, Friedman CS, Hewson I, Hershberger PK, Roberts SB (2015) Up in arms: immune and nervous system response to sea star wasting disease. PLoS One 10:e0133053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fugmann SD, Messier C, Novack LA, Cameron RA, Rast JP (2006) An ancient evolutionary origin of the Rag1/2 gene locus. Proc Natl Acad Sci U S A 103:3728–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujito NT, Sugimoto S, Nonaka M (2010) Evolution of thioester-containing proteins revealed by cloning and characterization of their genes from a cnidarian sea anemone, Haliplanella lineate. Dev Comp Immunol 34:775–784

    Article  CAS  PubMed  Google Scholar 

  • Fulton KM, Twine SM (2013) Immunoproteomics: current technology and applications. In: Fulton MK, Twine MS (eds) Immunoproteomics: methods and protocols. Humana Press, Totowa, pp 21–57

    Chapter  Google Scholar 

  • Furukawa R, Takahashi Y, Nakajima Y, Dan-Sohkawa M, Kaneko H (2009) Defense system by mesenchyme cells in bipinnaria larvae of the starfish, Asterina pectinifera. Dev Comp Immunol 33(2):205–215

    Article  CAS  PubMed  Google Scholar 

  • Furukawa R, Funabashi H, Matsumoto M, Kaneko H (2012a) Starfish ApDOCK protein essentially functions in larval defense system operated by mesenchyme cells. Immunol Cell Biol 90:955–965

    Article  CAS  PubMed  Google Scholar 

  • Furukawa R, Matsumoto M, Kaneko H (2012b) Characterization of a scavenger receptor cysteine-rich-domain-containing protein of the starfish, Asterina pectinifera: ApSRCR1 acts as an opsonin in the larval and adult innate immune systems. Dev Comp Immunol 36(1):51–61

    Article  CAS  PubMed  Google Scholar 

  • Furukawa R, Tamaki K, Kaneko H (2016) Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis. Immunol Cell Biol 94:315–321

    Article  CAS  PubMed  Google Scholar 

  • Gallo A, Tosti E (2013) Adverse effect of antifouling compounds on the reproductive mechanisms of the ascidian Ciona intestinalis. Mar Drugs 11(9):3554–3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Li M, Ma J, Zhang S (2014) An amphioxus gC1q protein binds human IgG and initiates the classical pathway: implications for a C1q-mediated complement system in the basal chordate. Eur J Immunol 44:3680–3695

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Ma Z, Qu B, Jiao D, Zhang S (2017) Identification and characterization of properdin in amphioxus: implications for a functional alternative complement pathway in the basal chordate. Fish Shellfish Immunol 65:1–8

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47(6):479–491

    Article  CAS  PubMed  Google Scholar 

  • Gelebart P, Opas M, Michalak M (2005) Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37(2):260–266

    Article  CAS  PubMed  Google Scholar 

  • Gellert M (2002) V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 71:101–132

    Article  CAS  PubMed  Google Scholar 

  • Gerdol M, Venier P (2015) An updated molecular basis for mussel immunity. Fish Shellfish Immunol 46:17–38

    Article  CAS  PubMed  Google Scholar 

  • Ghosh J, Buckley KM, Nair SV, Raftos DA, Miller C, Majeske AJ, Hibino T, Rast JP, Roth M, Smith LC (2010) Sp185/333: a novel family of genes and proteins involved in the purple sea urchin immune response. Dev Comp Immunol 34:235–245

    Article  CAS  PubMed  Google Scholar 

  • Gibson AW, Burke RD (1985) The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus. Dev Biol 107(2):414–419

    Article  CAS  PubMed  Google Scholar 

  • Gibson AW, Burke RD (1987) Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos. Exp Cell Res 173(2):546–557

    Article  CAS  PubMed  Google Scholar 

  • Giga Y, Ikai A (1985a) Purification and physical chemical characterization of 23S glycoprotein from sea urchin (Anthocidaris crassispina) eggs. J Biochem 98(1):237–243

    Article  CAS  PubMed  Google Scholar 

  • Giga Y, Ikai A (1985b) Purification of the most abundant protein in the coelomic fluid of a sea urchin which immunologically cross reacts with 23S glycoprotein in the sea urchin eggs. J Biochem 98(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Gilles K, Pearse J (1986) Disease in sea urchins Strongylocentrotus purpuratus: experimental infection and bacterial virulence. Dis Aquat Org 1:105–114

    Article  Google Scholar 

  • Glinel K, Thebault P, Humblot V, Pradier C-M, Jouenne T (2012) Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 8(5):1670–1684

    Article  CAS  PubMed  Google Scholar 

  • Gowda NM, Goswani U, Khan MI (2008) T-antigen binding lectin with antibacterial activity from marine invertebrate sea cucumber (Holothuria scabra): possible involvement in differential recognition of bacteria. J Invertebr Pathol 99:141–145

    Article  CAS  PubMed  Google Scholar 

  • Gross PS, Al-Sharif WZ, Clow LA, Smith LC (1999) Echinoderm immunity and the evolution of the complement system. Dev Comp Immunol 23:429–442

    Article  CAS  PubMed  Google Scholar 

  • Gross PS, Clow LA, Smith LC (2000) SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics 51:1034–1044

    Article  CAS  PubMed  Google Scholar 

  • Gudenkauf BM, Eaglesham J, Aragundi W, Hewson I (2014) Discovery of urchin-associated densoviruses (family Parvoviridae) in coastal waters of the Big Island, Hawaii. J Gen Virol 95:652–658

    Article  CAS  PubMed  Google Scholar 

  • Haag ES, Sly BJ, Andrews ME, Raff RA (1999) Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma. Dev Biol 211(1):77–87

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus AD, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases--climate links and anthropogenic factors. Science 285(5433):1505–1510

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama T, Suenaga T, Eto S, Niidome T, Aoyagi H (2004) Antibacterial activity of peptides derived from the C-terminal region of a hemolytic lectin, CEL-III, from the marine invertebrate Cucumaria echinata. J Biochem 135(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • Haug T, Kjuul AK, Styrvold OB, Sandsdalen E, Olsen OM, Stensvag K (2002) Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J Invertebr Pathol 81(2):94–102

    Article  CAS  PubMed  Google Scholar 

  • He Y, Tankg B, Zhang S, Liu Z, Zhao B, Chen L (2008) Molecular and immunochemical demonstration of a novel member of Bf/C2 homolog in amphioxus Branchiostoma belcheri: implication for involvement of hepatic cecum in acute phase response. Fish Shellfish Immunol 24:768–778

    Article  CAS  PubMed  Google Scholar 

  • Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, Huang HW (2000) Membrane thinning effect of the β-sheet antimicrobial protegrin. Biochemistry 39(1):139–145

    Article  CAS  PubMed  Google Scholar 

  • Henson JH, Schatten G (1983) Calcium regulation of the actin-mediated cytoskeletal transformation of sea urchin coelomocytes. Cell Motil Cytoskeleton 3:525–534

    Article  CAS  Google Scholar 

  • Henson JH, Nesbitt D, Wright BD, Scholey JM (1992) Immunolocalization of kinesin in sea urchin coelomocytes. Association of kinesin with intracellular organelles. J Cell Sci 103:309–320

    Article  CAS  PubMed  Google Scholar 

  • Henson JH, Svitkina TM, Burns AR, Hughes HE, MacPartland KJ, Nazarian R, Borisy GG (1999) Two components of actin-based retrograde flow in sea urchin coelomocytes. Mol Biol Cell 10(12):4075–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetzel HR (1963) Studies on holothurian coelomocytes. I. A survey of coelomocyte types. Biol Bull 125:289–301

    Article  Google Scholar 

  • Hewson I, Button JB, Gudenkauf BM, Miner B, Newton AL, Gaydos JK, Wynne J, Groves CL, Hendler G, Murray M, Fradkin S, Breitbart M, Fahsbender E, Lafferty KD, Kilpatrick AM, Miner CM, Raimondi P, Lahner L, Friedman CS, Daniels S, Haulena M, Marliave J, Burge CA, Eisenlord ME, Harvell CD (2014) Densovirus associated with sea-star wasting disease and mass mortality. Proc Natl Acad Sci U S A 111(48):17278–17283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365

    Article  CAS  PubMed  Google Scholar 

  • Hildemann WH, Dix TG (1972) Transplantation reactions of tropical Australian echinoderms. Transplantation 14(5):624–633

    Article  CAS  PubMed  Google Scholar 

  • Hill SK, Aragona JB, Lawrence JM (2004) Growth bands in test plates of the sea urchins Arbacia punctulata and Lytechinus variegatus (Echinodermata) on the central Florida Gulf Coast shelf. Gulf Mexico Sci 22(1):96–100

    Article  Google Scholar 

  • Hisamatsu K, Tsuda N, Goda S, Hatakeyama T (2008) Characterization of the α-helix region in domain 3 of the haemolytic lectin CEL-III: implications for self-oligomerization and haemolytic processes. J Biochem 143(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Ho ECH, Buckley KM, Schrankel CS, Schuh NW, Hibino T, Solek CM, Bae K, Wang G, Rast JP (2016) Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunol Cell Biol 94:861–874

    Article  CAS  Google Scholar 

  • Hogan MC, Griffin MD, Rossetti S, Torres VE, Ward CJ, Harris PC (2003) PKHDL1, a homolog of the autosomal recessive polycystic kidney disease gene, encodes a receptor with inducible T lymphocyte expression. Hum Mol Genet 12(6):685–698

    Article  CAS  PubMed  Google Scholar 

  • Horswill AR, Stoodley P, Stewart PS, Parsek MR (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387(2):371–380

    Article  CAS  PubMed  Google Scholar 

  • Howard-Ashby M, Materna SC, Brown CT, Tu Q, Oliveri P, Cameron RA, Davidson EH (2006) High regulatory gene use in sea urchin embryogenesis: implications for bilaterian development and evolution. Dev Biol 300(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29):8347–8352

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Liu H, Han Y, Fan L, Zhang Q, Liu J, Yu X, Zhang L, Chen S, Dong M, Wang L, Xu A (2007) Profile of acute immune response in Chinese amphioxus upon Staphylococcus aureus and Vibrio parahaemolyticus infection. Dev Comp Immunol 31(10):1013–1023

    Article  CAS  Google Scholar 

  • Huang YB, Huang JF, Chen YX (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2):143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Huang S, Yu Y, Yuan S, Li R, Wang X, Zhao H, Yu Y, Li J, Yang M, Xu L, Chen S, Xu A (2011) Functional characterization of a ficolin-mediated complement pathway in amphioxus. J Biol Chem 286:36739–36748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Huang S, Yan X, Yang P, Li J, Xu W, Zhang L, Wang R, Yu Y, Yuan S, Chen S, Luo G, Xu A (2014) Two apextrin-like proteins mediate extracellular and intracellular bacterial recognition in amphioxus. Proc Natl Acad Sci 111(37):13469–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A (2016) Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166:102–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huff T, Muller CS, Otto AM, Netzker R, Hannappel E (2001) Beta-thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 33(3):205–220

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Keller BD, Jackson JBC, Boyle MJ (1985) Mass mortality of the echinoid Diadema antillarum Philippi in Jamaica. Bull Mar Sci 36:377–384

    Google Scholar 

  • Hugli TE (1990) Structure and function of C3a anaphylatoxin. Curr Top Microbiol Immunol 153:181–208

    CAS  PubMed  Google Scholar 

  • Hyman L (1955) The invertebrates: echinodermata the coelomate bilateria, vol IV. McGraw-Hill, New York

    Google Scholar 

  • Islam MS, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48(7–8):624–649

    Article  CAS  Google Scholar 

  • Ito T, Matsutani T, Mori K, Nomure T (1992) Phagocytosis and hydrogen peroxide production by phagocytes of the sea urchin Strongylocentrotus nudus. Dev Comp Immunol 16:287–294

    Article  CAS  PubMed  Google Scholar 

  • Jangoux M (1987) Diseases of Echinodermata. 4. Structural abnormalities and general considerations on biotic diseases. Dis Aquat Org 3:221–229

    Article  Google Scholar 

  • Jangoux M (1990) Chapter 5: Diseases of echinodermata. In: Kinne O (ed) Diseases of marine animals, vol III. Wiley/Biologische Anstalt Helgoland, Hamburg

    Google Scholar 

  • Jangoux M, Vanden Bossche J-P (1975) Morphology and dynamics of the coelomocytes of Asterias rubens L. (Echinodermata, Asteroidea). Forma Funct 8:191–208

    Google Scholar 

  • Janies DA, Voight JR, Daly M (2011) Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Syst Biol 60(4):420–438

    Article  PubMed  Google Scholar 

  • Jellett FJ, Wardlaw AC, Scheibling RE (1988) Experimental infection of the echinoid Strongylocentrotus droebachiensis with Paramoeba invadens: quantitative changes in the coelomic fluid. Dis Aquat Org 4:149–157

    Article  Google Scholar 

  • Jiang J, Zhou Z, Dong Y, Jiang B, Chen Z, Yang A, Wang B, Guan X, Gao S, Sun H (2016) The in vitro effects of divalent metal ions on the activities of immune-related enzymes in from the sea cucumber Apostichopus japonicas. Aquac Res 47:1269–1276

    Article  CAS  Google Scholar 

  • Johnson P (1970) Studies on diseased urchins from Point Loma. Kelp habitat improvement project.California Institute of Technology, Pasadena, pp 82–90

    Google Scholar 

  • Jones GM (1985) Paramoeba invadens n. sp. (Amoebida, Paramoebidae), a pathogenic amoeba from the sea urchin, Strongylocentrotus droebachiensis, in eastern Canada. J Eukaryot Microbiol 32(4):564–569

    Google Scholar 

  • Jones G, Scheibling R (1985) Paramoeba sp. (Amoebida, Paramoebidae) as the possible causative agent of sea urchin mass mortality in Nova Scotia. J Parasitol 71:559–565

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Hebda A, Scheibling R, Miller R (1985) Histopathology of the disease causing mass mortality of sea urchins (Strongylocentrotus droebachiensis) in Nova Scotia. J Invertebr Pathol 45:260–271

    Article  CAS  PubMed  Google Scholar 

  • Jurgens LJ, Rogers-Bennett L, Raimondi PT, Schiebelhut LM, Dawson MN, Grosberg RK, Gaylord B (2015) Patterns of mass mortality among rocky shore invertebrates across 100 km of northeastern Pacific coastline. PLoS One 10(6):e0126280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanungo K (1982) In vitro studies on the effects of the cell-free coelomic fluid, calcium, ad/or magnesium on clumping of the coelomocytes of the sea star Asterias forbesi (Echinodermata: Asteroidea). Biol Bull 163:438–452

    Article  CAS  Google Scholar 

  • Kapitonov VV, Koonin EV (2015) Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct 10:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan G, Bertheussen K (1977) The morphology of echinoid phagocytes and mouse peritoneal macrophages during phagocytosis in vitro. Scand J Immunol 6:1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Karp RD, Hildemann WH (1976) Specific allograft reactivity in the sea star Dermasterias imbricata. Transplantation 22(5):434–439

    Article  CAS  PubMed  Google Scholar 

  • Katow H (2004) The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae. Mech Dev 121(4):325–337

    Article  CAS  PubMed  Google Scholar 

  • Kee BL (2009) E and ID proteins branch out. Nat Rev Immunol 9(3):175–184

    Article  CAS  PubMed  Google Scholar 

  • Kiani N, Heidari B, Rassa M, Kadkhodazadeh M, Heidari B (2014) Antibacterial activity of the body wall extracts of sea cucumber (Invertebrata; Echinodermata) on infectious oral streptococci. J Basic Clin Physiol Pharmacol 25:367–373

    Article  CAS  Google Scholar 

  • Kim AD, Melick CH, Clements WK, Stachura DL, Distel M, Panakova D, MacRae C, Mork LA, Crump JG, Traver D (2014) Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO J 33(20):2363–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura A, Sakaguchi E, Nonaka M (2009) Multi-component complement system of Cnidaria: C3, Bf, and MASP genes expressed in the endodermal tissues of a sea anemone, Nematostella vectensis. Immunobiology 214:165–178

    Article  CAS  PubMed  Google Scholar 

  • Kindred JE (1924) The cellular elements in the perivisceral fluid of echinoderms. Biol Bull 46:228–251

    Article  Google Scholar 

  • Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447

    Article  CAS  PubMed  Google Scholar 

  • Kober KM, Bernardi G (2013) Phylogenomics of strongylocentrotid sea urchins. BMC Evol Biol 13:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Kominami T (2000) Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus. Dev Growth Differ 42(1):41–51

    Article  CAS  PubMed  Google Scholar 

  • Kominami T, Takata H (2003) Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae. Dev Growth Differ 45(2):129–142

    Article  PubMed  Google Scholar 

  • Kominami T, Takata H, Takaichi M (2001) Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis. Dev Growth Differ 43(6):699–707

    Article  CAS  PubMed  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3(4):a010306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krupke OA, Zysk I, Mellott DO, Burke RD (2016) Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos. elife 5:e16000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuznetsova TA, Anisimov MM, Popov AM, Baranova SI, Afiyatullov SS, Kapustina II, Antonov AS, Elyakov GB (1982) A comparative study in vitro of physiological activity of triterpene glycosides of marine invertebrates of echinoderm type. Comp Biochem Physiol C 73(1):41–43

    Article  CAS  PubMed  Google Scholar 

  • Laegdsgaard P, Byrne M, Anderson DT (1991) Reproduction of sympatric populations of Heliocidaris erythrogramma and H. tuberculata (Echinoidea) in New South Wales. Mar Biol 110(3):359–374

    Article  Google Scholar 

  • Lapraz F, Haillot E, Lepage T (2015) A deuterostome origin of the Spemann organizer suggested by Nodal and ADMPs functions in echinoderms. Nat Commun 6:8927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence J (1996) Mass mortalities of echinoderms from abiotic factors. Echinoderm Stud. M. Jangoux and G. J Lawrence. Rotterdam: Balkema 5:103–137

    Google Scholar 

  • Le CF, Gudimella R, Razali R, Manikam R, Sekaran SD (2016) Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3. Sci Rep 6:26828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclerc M, Kresdorn N, Rotter B (2013) Evidence of complement genes in the sea-star Asterias rubens. Comparisons with the sea urchin. Immunol Lett 151:68–70

    Article  CAS  PubMed  Google Scholar 

  • Lee PY, Davidson EH (2004) Expression of SpGatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors. Gene Expr Patterns 5(2):161–165

    Article  CAS  PubMed  Google Scholar 

  • Lee MT, Chen FY, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43(12):3590–3599

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Yang ST, Lee SK, Jung HH, Shin SY, Hahm KS, Kim JI (2008) Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J 275(15):3911–3920

    Article  CAS  PubMed  Google Scholar 

  • Leippe M (1999) Antimicrobial and cytolytic polypeptides of amoeboid protozoa—effector molecules of primitive phagocytes. Dev Comp Immunol 23(4–5):267–279

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA (1988) Mass mortality of Diadema antillarum in the Caribbean: what have we learned? Annu Rev Ecol Syst 19:371–393

    Article  Google Scholar 

  • Lessios HA, Robertson D, Cubit J (1984) Spread of Diadema mass mortality through the Caribbean. Science 226(4672):335–337

    Article  CAS  PubMed  Google Scholar 

  • Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J, Aird W, Rosenberg RD, Hampton TG, Sellke F, Carmeliet P, Simons M (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Li C, Haug T, Styrvold OB, Jorgensen TO, Stensvag K (2008) Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 32(12):1430–1440

    Article  CAS  PubMed  Google Scholar 

  • Li C, Blencke HM, Smith LC, Karp MT, Stensvag K (2010a) Two recombinant peptides, SpStrongylocins 1 and 2, from Strongylocentrotus purpuratus, show antimicrobial activity against Gram-positive and Gram-negative bacteria. Dev Comp Immunol 34(3):286–292

    Article  CAS  PubMed  Google Scholar 

  • Li C, Haug T, Moe MK, Styrvold OB, Stensvag K (2010b) Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 34(9):959–968

    Article  CAS  PubMed  Google Scholar 

  • Li C, Blencke HM, Haug T, Jorgensen O, Stensvag K (2014a) Expression of antimicrobial peptides in coelomocytes and embryos of the green sea urchin (Strongylocentrotus droebachiensis). Dev Comp Immunol 43(1):106–113

    Article  CAS  Google Scholar 

  • Li Z, Maa Z, van der Kuijpa TJ, Yuana Z, Huanga L (2014b) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853

    Article  PubMed  CAS  Google Scholar 

  • Li C, Blencke HM, Haug T, Stensvag K (2015) Antimicrobial peptides in echinoderm host defense. Dev Comp Immunol 49(1):190–197

    Article  CAS  PubMed  Google Scholar 

  • Liddell WD, Ohlhorst SL (1986) Changes in benthic community composition following the mass mortality of Diadema at Jamaica. J Exp Mar Biol Ecol 95:1–8

    Article  Google Scholar 

  • Liu H, Zheng F, Sun X, Hong X, Dong S, Wang B, Tang X, Wang Y (2010a) Identification of the pathogens associated with skin ulceration and peristome tumescence in cultured sea cucumbers Apostichopus japonicus (Selenka). J Invertebr Pathol 105:236–242

    Article  PubMed  Google Scholar 

  • Liu SP, Zhou L, Lakshminarayanan R, Beuerman RW (2010b) Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities. Int J Pept Res Ther 16(3):199–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120(4):497–512

    Article  CAS  PubMed  Google Scholar 

  • Long KA, Nossa CW, Sewell MA, Putnam NH, Ryan JF (2016) Low coverage sequencing of three echinoderm genomes: the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis. GigaScience 5(1):1–4

    Article  CAS  Google Scholar 

  • Loram J, Raudonis R, Chapman J, Lortie M, Bodnar A (2012) Sea urchin coelomocytes are resistant to a variety of DNA damaging agents. Aquat Toxicol 124–125:133–138

    Article  PubMed  CAS  Google Scholar 

  • Lun CM, Schrankel CS, Chou H-Y, Sacchi S, Smith LC (2016) A recombinant Sp185/333 protein from the purple sea urchin has multitasking binding activities towards certain microbes and PAMPs. Immunobiology 221(8):889–903

    Article  CAS  PubMed  Google Scholar 

  • Lun CM, Bishop BM, Smith LC (2017a) Multitasking immune Sp185/333 protein, rSpTransformer-E1, and its recombinant fragments undergo secondary structural transformation upon binding targets. J Immunol 198(7):2957–2966

    Article  CAS  PubMed  Google Scholar 

  • Lun CM, Samuel R, Gillmor SD, Boyd A, Smith LC (2017b) SpTransformer, a recombinant Sp185/333 protein, binds to phosphatidic acid and deforms membranes. Front Immunol 8:481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luna-Acosta L, Bustamante P, Godefroy J, Fruitier-Arnaudin I, Thomas-Guyon H (2010) Seasonal variation of pollution biomarkers to assess the impact on the health status of juvenile Pacific oysters Crassostrea gigas exposed in situ. Environ Sci Pollut Res 17:999–1008

    Article  CAS  PubMed  Google Scholar 

  • Lyons BP, Thain JE, Stentiford GD, Hylland K, Davies IM, Vethaak AD (2010) Using biological effects tools to define good environmental status under the European Union Marine Strategy Framework Directive. Mar Pollut Bull 60:1647–1651

    Article  CAS  PubMed  Google Scholar 

  • Maes P, Jangoux M (1984) The bald-sea-urchin disease: a biopathological approach. Helgolander Meeresun 37:217–224

    Article  Google Scholar 

  • Majeske AJ, Oleksyk T, Smith LC (2013a) The Sp185/333 immune response genes and proteins are expressed in cells dispersed within all major organs of the adult purple sea urchin. Innate Immun 19(6):569–587

    Article  PubMed  CAS  Google Scholar 

  • Majeske AJ, Bayne CJ, Smith LC (2013b) Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide. PLoS One 8(4):e61419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majeske AJ, Oren M, Sacchi S, Smith LC (2014) Single sea urchin phagocytes express messages of a single sequence from the diverse Sp185/333 gene family in response to bacterial challenge. J Immunol 193:5678–5688

    Article  CAS  PubMed  Google Scholar 

  • Maltseva AL, Aleshina GM, Kokryakov VN, Krasnodembskii EG (2007) Diversity of antimicrobial peptides in acidic extracts from coelomocytes of starfish Asterias rubens L. Vestn S-Peterb Univ 3:85–94

    Google Scholar 

  • Marino R, Kimura Y, De Santis R, Lambris JD, Pinto MR (2002) Complement in urochordates: cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics 53(12):1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Maroti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374

    Article  CAS  PubMed  Google Scholar 

  • Martin I, Grotewiel MS (2006) Oxidative damage and age-related functional declines. Mech Ageing Dev 127:411–423

    Article  CAS  PubMed  Google Scholar 

  • Materna SC, Davidson EH (2012) A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364(1):77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Materna SC, Nam J, Davidson EH (2010) High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 10(4–5):177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Materna SC, Ransick A, Li E, Davidson EH (2013) Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos. Dev Biol 375:92–104

    Article  CAS  PubMed  Google Scholar 

  • Matranga V, Toia G, Bonaventura R, Müller WEG (2000) Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones 5(2):113–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matranga V, Bonaventura R, Di Bella G (2002) Hsp70 as a stress marker of sea urchin coelomocytes in short term cultures. Cell Mol Biol 48(4):345–349

    CAS  PubMed  Google Scholar 

  • Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schröder HC, Müller WEG (2005) Monitoring chemical and physical stress using sea urchin immune cells. Progress in molecular and subcellular biology. Subseries marine molecular biotechnology. In: Matranga V (ed) Echinodermata. Springer, Berlin/Heidelberg

    Google Scholar 

  • Matranga V, Pinsino A, Celi M, Di Bella G, Natoli A (2006) Impacts of UV-B radiation on short-term cultures of sea urchin coelomocytes. Mar Biol 149:25–34

    Article  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35(35):11361–11368

    Article  CAS  PubMed  Google Scholar 

  • McCauley BS, Weideman EP, Hinman VF (2010) A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Dev Biol 340(2):200–208

    Article  CAS  PubMed  Google Scholar 

  • Melo MN, Ferre R, Castanho MARB (2009) Opinion: antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7(3):245–250

    Article  CAS  PubMed  Google Scholar 

  • Messier-Solek C, Buckley KM, Rast JP (2010) Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol 22(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Metchnikoff E (1893) Lectures on the comparative pathology of inflammation, delivered at the Pasteur Institute in 1891. Kegan Paul, Trench, Rtubner & Co., Ltd., London, pp xii–218

    Google Scholar 

  • Miller RJ, Colodey AG (1983) Widespread mass mortalities of the green sea urchin in Nova Scotia, Canada. Mar Biol 73:263–267

    Article  Google Scholar 

  • Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TC (2007) The innate immune repertoire in Cnidaria—ancestral complexity and stochastic gene loss. Genome Biol 8(4):1–13

    Google Scholar 

  • Miller CA, Buckley KM, Easley RL, Smith LC (2010) An Sp185/333 gene cluster from the purple sea urchin and putative microsatellite-mediated gene diversification. BMC Genomics 11(1):575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mogilenko DA, Kudriavtsev IV, Orlov SV, Kharazova AD, Polevshchikov AV (2010) Expression of the starfish complement component C3 gene homologue under the influence of bacterial lipopolysaccharide. Mol Biol (Mosk) 44:74–84

    Article  CAS  Google Scholar 

  • Mohammadizadeh F, Ehsanpor M, Afkhami M, Mokhlesi A, Khazaali A, Montazeri S (2013) Evaluation of antibacterial, antifungal and cytotoxic effects of Holothuria scabra from the north coast of the Persian Gulf. J Mycol Med 23(4):225–229

    Article  CAS  PubMed  Google Scholar 

  • Moore HB, Jutare T, Bauer JC, Jones JA (1963) The biology of Lytechinus variegatus. Bull Mar Sci Gulf Caribb 13:23–53

    Google Scholar 

  • Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504–508

    Article  CAS  PubMed  Google Scholar 

  • Moses C, Bonem R (2001) Recent population dynamics of Diadema antillarum and Tripneustes ventricosus along the north coast of Jamaica, WI. Bull Mar Sci 68:327–336

    Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Multerer KA, Smith LC (2004) Two cDNAs from the purple sea urchin, Strongylocentrotus purpuratus, encoding mosaic proteins with domains found in factor H, factor I, and complement components C6 and C7. Immunogenetics 56:89–106

    Article  CAS  PubMed  Google Scholar 

  • Nair SV, Del Valle H, Gross PS, Terwilliger DP, Smith LC (2005) Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 22(1):33–47

    Article  CAS  PubMed  Google Scholar 

  • Narula J, Smith AM, Gottgens B, Igoshin OA (2010) Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate. PLoS Comput Biol 6(5):e1000771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narula J, Williams CJ, Tiwari A, Marks-Bluth J, Pimanda JE, Igoshin OA (2013) Mathematical model of a gene regulatory network reconciles effects of genetic perturbations on hematopoietic stem cell emergence. Dev Biol 379(2):258–269

    Article  CAS  PubMed  Google Scholar 

  • Noll H, Matranga V, Cervello M, Humphreys T, Kuwasaki B, Adelson D (1985) Characterization of toposomes from sea urchin blastula cells: a cell organelle mediating cell adhesion and expressing positional information. Proc Natl Acad Sci U S A 82(23):8062–8066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noll H, Alcedo J, Daube M, Frei E, Schiltz E, Hunt J, Humphries T, Matranga V, Hochstrasser M, Aebersold R, Lee H, Noll M (2007) The toposome, essential for sea urchin cell adhesion and development, is a modified iron-less calcium-binding transferrin. Dev Biol 310(1):54–70

    Article  CAS  PubMed  Google Scholar 

  • Nonaka M, Azumi K (1999) Opsonic complement system of the solitary ascidian, Halocynthia roretzi. Dev Comp Immunol 23:421–427

    Article  CAS  PubMed  Google Scholar 

  • Norris RD, Turner SK, Hull PM, Ridgwell A (2013) Marine ecosystem responses to Cenozoic global change. Science 341(6145):492–498

    Article  CAS  PubMed  Google Scholar 

  • Nydam ML, De Tomaso AW (2011) Creation and maintenance of variation in allorecognition loci: molecular analysis in various model systems. Front Immunol 2:79

    PubMed  PubMed Central  Google Scholar 

  • O’Laughlin PM, Waters JM (2004) A molecular and morphological revision of genera of Asterinidae (Echinodermata: Asteroidea). Mem Mus Victoria 61(1):1–40

    Article  Google Scholar 

  • Ogden JC, Abbott DP, Abbott, IA (eds) (1973) Studies on the activity pattern and food of the echinoid Diadema antillarum Philippi on a West Indian patch reef. Special publication no. 2, West Indies Laboratory of Fairleigh Dickinson Univ., St. Croix, Virgin Islands, p 96

    Google Scholar 

  • Ohguro Y, Takata H, Kominami T (2011) Involvement of Delta and Nodal signals in the specification process of five types of secondary mesenchyme cells in embryo of the sea urchin, Hemicentrotus pulcherrimus. Dev Growth Differ 53(1):110–123

    Article  PubMed  Google Scholar 

  • Oren T, Torregroza I, Evans T (2005) An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling. Nucleic Acids Res 33(13):4357–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren M, Barela Hudgell MA, D’Allura B, Agronin J, Gross A, Podini D, Smith LC (2016a) Short tandem repeats, segmental duplications, gene deletion, and genomic instability in a rapidly diversified immune gene family. BMC Genomics 17:900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oren M, Barela Hudgell MA, Golconda P, Lun CM, Smith LC (2016b) Genomic instability and shared mechanisms for gene diversification in two distant immune gene families: the echinoid 185/333 and the plant NBS-LRR. In: Malagoli D (ed) The evolution of the immune system, conservation and diversification. Elsevier Inc/Academic Press, London, pp 295–310

    Google Scholar 

  • Oweson C, Sköld H, Pinsino A, Matranga V, Hernroth B (2008) Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus). Aquat Toxicol 89:75–81

    Article  CAS  PubMed  Google Scholar 

  • Oweson C, Li C, Söderhäll I, Hernroth B (2010) Effects of manganese and hypoxia on coelomocyte renewal in the echinoderm Asterias rubens (L.). Aquat Toxicol 100:84–90

    Article  CAS  PubMed  Google Scholar 

  • Pag U, Sahl HG (2002) Lanthionine-containing bacterial peptides. In: Dutton CJ, Haxell MA, McArthur HAI, Wax RG (eds) Peptide antibiotics: discovery, mode of actions, and applications. Dekker M, New York, pp 47–80

    Google Scholar 

  • Pagliara P, Stabili L (2012) Zinc effect on the sea urchin Paracentrotus lividus immunological competence. Chemosphere 89(5):563–568

    Article  CAS  PubMed  Google Scholar 

  • Palumbi SR, Lessios HA (2005) Evolutionary animation: how do molecular phylogenies compare to Mayr’s reconstruction of speciation patterns in the sea? Proc Natl Acad Sci U S A 102:6566–6572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancer Z (2000) Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc Natl Acad Sci U S A 97:13156–13161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancer Z (2001) Individual-specific repertoires of immune cells SRCR receptors in the purple sea urchin (S. purpuratus). Adv Exp Med Biol 484:31–40

    Article  CAS  PubMed  Google Scholar 

  • Pancer Z, Rast JP, Davidson EH (1999) Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes. Immunogenetics 49(9):773–786

    Article  CAS  PubMed  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244(1):253–257

    Article  CAS  PubMed  Google Scholar 

  • Pearse J, Costa D, Yellin M, Agegian C (1977) Localized mass mortality of red sea urchin, Strongylocentrotus franciscanus, near Santa Cruz, California. Fish Bull US 75:645–648

    Google Scholar 

  • Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6(10):729–742

    Article  CAS  PubMed  Google Scholar 

  • Pena MH, Oxenford HA, Parker C, Johnson A (2010) Biology and fishery management of the white sea urchin, Tripneustes ventricosus, in the eastern Caribbean. FAO Fisheries and Aquaculture Circular No. 1056. FAO, Rome

    Google Scholar 

  • Peng M, Niu D, Chen Z, Lan T, Dong Z, Tran TN, Li J (2017) Expression of a novel complement C3 gene in the razor clam Sinonovacula constricta and its role in innate immune response and hemolysis. Dev Comp Immunol 73:184–192

    Article  CAS  PubMed  Google Scholar 

  • Perez-Portela R, Turon X, Riesgo A (2016) Characterization of the transcriptome and gene expression of four different tissues in the ecologically relevant sea urchin Arbacia lixula using RNA-seq. Mol Ecol Resour 16(3):794–808

    Article  CAS  PubMed  Google Scholar 

  • Perry G, Epel D (1981) Ca2+-stimulated production of H2O2 from naphthoquinone oxidation in Arbacia eggs. Exp Cell Res 134(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WYI, Wilson NK, Landry JR, Wood AD, Kolb-Kokocinski A, Green AR, Tannahill D, Lacaud G, Kouskoff V, Göttgens B (2007) Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci U S A 104(45):17692–17697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, Lelli B, Malossi M, Neri P, Rossolini GM, Bracci L (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 49(7):2665–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinsino A, Matranga V (2015) Sea urchin immune cells as sentinels of environmental stress. Dev Comp Immunol 49:198–205

    Article  CAS  PubMed  Google Scholar 

  • Pinsino A, Thorndyke MC, Matranga V (2007) Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones Winter 12(4):331–341

    Article  CAS  Google Scholar 

  • Pinsino A, Della Torre C, Sammarini V, Bonaventura R, Amato E, Matranga V (2008) Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Southern Adriatic Sea, Italy. Cell Biol Toxicol 24(6):541–552

    Article  CAS  PubMed  Google Scholar 

  • Pinsino A, Russo R, Bonaventura R, Brunelli A, Marcomini A, Matranga V (2015) Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signaling pathway. Sci Rep 5:14492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisani D, Feuda R, Peterson JK, Smith AB (2012) Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol Phylogenet Evol 62(1):27–34

    Article  PubMed  Google Scholar 

  • Plytycz B, Seljelid R (1993) Bacterial clearance by the sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 17(3):283–289

    Article  CAS  PubMed  Google Scholar 

  • Prado-Alvarez M, Rotllant J, Gestal C, Novoa B, Figueras A (2009) Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus. Fish Shellfish Immunol 26:305–315

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Gómez F, García-Arrarás JE (2010) Echinoderm immunity. Invertebr Surviv J 7:211–220

    Google Scholar 

  • Ramírez-Gómez F, Ortiz-Pineda PA, Rojas-Cartagena C, Suarez-Castillo EC, Garcia-Ararras JE (2008) Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima. Immunogenetics 60:57–71

    Article  PubMed  CAS  Google Scholar 

  • Ransick A, Davidson EH (2006) Cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297(2):587–602

    Article  CAS  PubMed  Google Scholar 

  • Ransick A, Davidson EH (2012) Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis. Dev Biol 364(2):259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rast JP, Messier-Solek C (2008) Marine invertebrate genome sequences and our evolving understanding of animal immunity. Biol Bull 214(3):274–283

    Article  CAS  PubMed  Google Scholar 

  • Rast JP, Oliveri P, Davidson EH (2000) Conserved linkage among sea urchin homologs of genes encoded in the vertebrate MHC region. In: Kasahara M (ed) The major histocompatibility complex: evolution, structure and function. Springer, Tokyo, pp 66–74

    Chapter  Google Scholar 

  • Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW (2006) Genomic insights into the immune system of the sea urchin. Science 314:952–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Mukherjee S, Bhunia NS, Bhunia AS, Ray M (2015) Immunotoxicological threats of pollutants in aquatic invertebrates. In: Larramendy ML (ed) Emerging pollutants in the environment—current and further implications. InTech, Croatia, pp 147–165

    Google Scholar 

  • Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  PubMed  Google Scholar 

  • Reich A, Dunn C, Akasaka K, Wessel G (2015) Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One 10(3):e0119627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinardy HC, Bodnar AG (2015) Profiling DNA damage and repair capacity in sea urchin larvae and coelomocytes. Mutagenesis 30:829–839

    CAS  PubMed  Google Scholar 

  • Reinardy HC, Chapman J, Bodnar AG (2016) Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins. Biol Lett 12:20151057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinisch CL, Bang FB (1971) Cell recognition: reactions of the sea star (Asterias vulgaras) to the injection of amebocytes of sea urchin (Arbacia punctulata). Cell Immunol 2(5):496–503

    Article  CAS  PubMed  Google Scholar 

  • Ridzwan BH, Kaswandi MA, Azman Y, Fuad M (1995) Screening for antibacterial agents in three species of sea cucumbers from coastal areas of Sabah. Gen Pharmacol 26(7):1539–1543

    Article  CAS  PubMed  Google Scholar 

  • Riemann D, Kehlen A, Langner J (1999) CD13—not just a marker in leukemia typing. Immunol Today 20(2):83–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo F, Fernandez-Serra M, Squarzoni P, Archimandritis A, Arnone MI (2006) Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev Biol 300(1):35–48

    Article  CAS  PubMed  Google Scholar 

  • Robert J (2010) Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev Comp Immunol 34:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson DR (1991) Increase in surgeonfish populations after mass mortality of the sea urchin Diadema antillarum in Panama indicate food limitation. Mar Biol 111(3):437–444

    Article  Google Scholar 

  • Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10(9):1765–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld Y, Papo N, Shai Y (2006) Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides—peptide properties and plausible modes of action. J Biol Chem 281(3):1636–1643

    Article  CAS  PubMed  Google Scholar 

  • Rosengarten RD, Nicotra ML (2011) Model systems of invertebrate allorecognition. Curr Biol 21(2):R82–R92

    Article  CAS  PubMed  Google Scholar 

  • Roth RO, Wildins AG, Cooke GM, Raftos DA, Nair SV (2014) Characterization of the highly variable immune response gene family, He185/333, in the sea urchin, Heliocidaris erythrogramma. PLoS One 9(10):e62079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruffins SW, Ettensohn CA (1996) A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122(1):253–263

    Article  CAS  PubMed  Google Scholar 

  • Russell MP, Ebert TA, Garcia V, Bodnar A (2012) Field and laboratory growth estimates of the sea urchin Lytechinus variegatus in Bermuda. In: Johnson C (ed) Echinoderms in a changing world. CRC Press, Boca Raton, FL, pp 133–139

    Google Scholar 

  • Sackton TB, Lazzaro BP, Schlenke TA, Evans JD, Hultmark D, Clark AG (2007) Dynamic evolution of the innate immune system in Drosophila. Nat Genet 39(12):1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Sammarco PW (1980) Diadema and its relationship to coral spat mortality: grazing, competition, and biological disturbance. J Exp Mar Biol Ecol 45:245–272

    Article  Google Scholar 

  • Sarrias MR, Gronlund J, Padilla O, Madsen J, Holmskov U, Lozano F (2004) The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit Rev Immunol 24:1–37

    Article  CAS  PubMed  Google Scholar 

  • Schatz DG (2004) Antigen receptor genes and the evolution of a recombinase. Semin Immunol 16:245–256

    Article  CAS  PubMed  Google Scholar 

  • Scheibling R, Hennigar A (1997) Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia: evidence for a link with large-scale meteorologic and oceanographic events. Mar Ecol Prog Ser 152:155–165

    Article  Google Scholar 

  • Scheibling R, Feehan C, Lauzon-Guay J (2010) Disease outbreaks associated with recent hurricanes cause mass mortality of sea urchins in Nova Scotia. Mar Ecol Prog Ser 408:109–116

    Article  Google Scholar 

  • Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, Muccilli V, Cunsolo V, Haagensen JJA, Molin S (2010) Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus. J Appl Microbiol 108(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Schillaci D, Cusimano MG, Cunsolo V, Saletti R, Russo D, Vazzana M, Vitale M, Arizza V (2013) Immune mediators of sea-cucumbers Holothuria tubulosa (Echinodermata) as a source of novel antimicrobial and anti-staphylococcal biofilm agents. AMB Express 3(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schillaci D, Cusimano MG, Spinello A, Barone G, Russo D, Vitale M, Parrinello D, Arizza V (2014) Paracentrin 1, a synthetic antimicrobial peptide from the sea-urchin Paracentrotus lividus, interferes with staphylococcal and Pseudomonas aeruginosa biofilm formation. AMB Express 4:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schillaci D, Spinello A, Cusimano MG, Cascioferro S, Barone G, Vitale M, Arizza V (2016) A peptide from human beta thymosin as a platform for the development of new anti-biofilm agents for Staphylococcus spp. and Pseudomonas aeruginosa. World J Microbiol Biotechnol 32(8):124

    Article  PubMed  CAS  Google Scholar 

  • Schrankel CS, Solek CM, Buckley KM, Anderson MK, Rast JP (2016) A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Dev Biol 416(1):149–161

    Article  CAS  PubMed  Google Scholar 

  • Schultz J (2016) Mass mortality events of echinoderms: global patterns and local consequences. MS Thesis, Simon Fraser University

    Google Scholar 

  • Schultz J, Clouthier RN, Côté IM (2016) Evidence for trophic cascade on rocky reefs following sea star mass mortality in British Columbia. PeerJ 4:e1980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schurr MJ, Martin DW, Mudd MH, Deretic V (1994) Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J Bacteriol 176(11):3375–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott MG, Gold MR, Hancock REW (1999) Interaction of cationic peptides with lipoteichoic acid and Gram-positive bacteria. Infect Immun 67(12):6445–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi R, Fujito NT, Nonaka M (2012) Evolution of the thioester-containing proteins (TEPs) of the arthropoda, revealed by molecular cloning of TEP genes from a spider, Hasarius adansoni. Dev Comp Immunol 36:483–489

    Article  CAS  PubMed  Google Scholar 

  • Service M, Wardlaw AC (1984) Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp Biochem Physiol B Comp Biochem 79(2):161–165

    Article  Google Scholar 

  • Shah M, Brown KM, Smith LC (2003) The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria. Dev Comp Immunol 27:529–538

    Article  CAS  PubMed  Google Scholar 

  • Sherman LS, Schrankel CS, Brown KJ, Smith LC (2015) Extraordinary diversity of immune response proteins among sea urchins: nickel-isolated Sp185/333 proteins show broad variations in size and charge. PLoS One 10(9):e0138892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherwood DR, McClay DR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126(8):1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Shi JS, Ross CR, Leto TL, Blecha F (1996) PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47(phox). Proc Natl Acad Sci USA 93(12):6014–6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu M (1994) Histopathological investigation of the spotted gonad disease in the sea urchin, Strongylocentrotus intermedius. J Invertebr Pathol 63:182–187

    Article  Google Scholar 

  • Shin YP, Park HJ, Shin SH, Lee YS, Park S, Jo S, Lee YH, Lee IH (2010) Antimicrobial activity of a halocidin-derived peptide resistant to attacks by proteases. Antimicrob Agents Chemother 54(7):2855–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipp LE, Hill RZ, Moy GW, Gökırmak T, Hamdoun A (2015) ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development 142(20):3537–3548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoguchi E, Tokuoka M, Kominami T (2002) In situ screening for genes expressed preferentially in secondary mesenchyme cells of sea urchin embryos. Dev Genes Evol 212(9):407–418

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357

    Article  CAS  PubMed  Google Scholar 

  • Silva JR (2000) The onset of phagocytosis and identity in the embryo of Lytechinus variegatus. Dev Comp Immunol 24(8):733–739

    Article  CAS  PubMed  Google Scholar 

  • Sim RB, Sim E (1981) Autolytic fragmentation of complement components C3 and C4 under denaturing conditions, a property shared with alpha 2-macroglobulin. Biochem J 193(1):129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skerjanc IS, Truong J, Filion P, McBurney MW (1996) A splice variant of the ITF-2 transcript encodes a transcription factor that inhibits MyoD activity. J Biol Chem 271(7):3555–3561

    Article  CAS  PubMed  Google Scholar 

  • Skjoedt MO, Palarasah Y, Rasmussen K, Vitved L, Salomonsen J, Kliem A, Hansen S, Koch C, Skjodt K (2010) Two mannose-binding lectin homologues and an MBL-associated serine protease are expressed in the gut epithelia of the urochordate species Ciona intestinalis. Dev Comp Immunol 34:59–68

    Article  CAS  PubMed  Google Scholar 

  • Smith VJ (1981) The echinoderms. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells. Academic Press, New York, pp 513–562

    Google Scholar 

  • Smith LC (2002) Thioester function is conserved in SpC3, the sea urchin homologue of the complement component C3. Dev Comp Immunol 26:603–614

    Article  PubMed  Google Scholar 

  • Smith LC (2012) Innate immune complexity in the purple sea urchin: diversity of the Sp185/33 system. Front Immunol 3:70

    PubMed  PubMed Central  Google Scholar 

  • Smith LC, Coscia MR (2016) Tuning the host–pathogen relationship through evolution with a special focus on the echinoid Sp185/333 system. Invertebr Surviv J 13:355–373

    Google Scholar 

  • Smith LC, Davidson EH (1992) The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunol Today 13(9):356–362

    Article  CAS  PubMed  Google Scholar 

  • Smith LC, Davidson EH (1994) The echinoid immune system. Characters shared with vertebrate immune systems and characters arising in deuterostome phylogeny. Ann N Y Acad Sci 712:213–236

    Article  CAS  PubMed  Google Scholar 

  • Smith LC, Lun CM (2016) Research highlight: multitasking rSp0032 has anti-pathogen binding activities predicting flexible and effective immune responses in sea urchins mediated by the Sp185/333 system. Pathog Infect Dis 2:e1394

    Google Scholar 

  • Smith LC, Lun CM (2017) The SpTransformer gene family (formerly Sp185/333) in the purple sea urchin and the functional diversity of the antipathogen rSpTransformer-E1 protein. Front Immunol 8:725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith LC, Britten RJ, Davidson EH (1992) SpCoel1, a sea urchin profilin gene expressed specifically in coelomocytes in response to injury. Mol Biol Cell 3:403–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LC, Chang L, Britten RJ, Davidson EH (1996) Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags—complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. J Immunol 156:593–602

    CAS  PubMed  Google Scholar 

  • Smith LC, Shih CS, Dachenhausen SG (1998) Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. J Immunol 161:6784–6793

    CAS  PubMed  Google Scholar 

  • Smith LC, Azumi K, Nonaka M (1999) Complement systems in invertebrates. The ancient alternative and lectin pathways. Immunopharmacology 42(1–3):107–120

    Article  CAS  PubMed  Google Scholar 

  • Smith LC, Clow LA, Terwilliger DP (2001) The ancestral complement system in sea urchins. Immunol Rev 180:16–34

    Article  CAS  PubMed  Google Scholar 

  • Smith LC, Ghosh J, Buckley KM, Clow LA, Dheilly NM, Haug T, Henson JH, Li C, Lun CM, Majeske AJ, Matranga V, Nair SV, Rast JP, Raftos DA, Roth M, Sacchi S, Schrankel, CS, Stensvåg K (2010) Echinoderm immunity. In: Soderhall K (ed) Invertebrate immunity. Madame Curie Bioscience Database, Landes Biosciences, Austin TX. Adv Exp Med Biol 708:260–301

    Google Scholar 

  • Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Bellé R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Genevière A-M, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron K-F, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallböök F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su Y-H, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Röttinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu S-Y, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu L-L, Thorn R, Wright R (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952

    Article  PubMed  Google Scholar 

  • Solek CM, Oliveri P, Loza-Coll M, Schrankel CS, Ho ECH, Wang G, Rast JP (2013) An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Dev Biol 382(1):280–292

    Article  CAS  PubMed  Google Scholar 

  • Solstad RG, Li C, Isaksson J, Johansen J, Svenson J, Stensvag K, Haug T (2016) Novel antimicrobial peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the edible sea urchin Echinus esculentus have 6-Br-Trp post-translational modifications. PLoS One 11(3):e0151820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spizek J, Novotna J, Rezanka T, Demain AL (2010) Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 37(12):1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Spoering AL, Gilmore MS (2006) Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 9(2):133–137

    Article  CAS  PubMed  Google Scholar 

  • Stabili L, Pagliara P (2009) Effect of zinc on lysozyme-like activity of the seastar Marthasterias glacialis (Echinodermata, Asteroidea) mucus. J Invertebr Pathol 100:189–192

    Article  CAS  PubMed  Google Scholar 

  • Stabili L, Pagliara P (2015) The sea urchin Paracentrotus lividus immunological response to chemical pollution: the case of the pesticide lindane. Chemosphere 134:60–66

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Halvorsen O (1998) Experimental transmission of the Nematode Echinomermella matsi to the sea urchin Strongylocentrotus drobachiensis in the laboratory. J Parasitol 84:658–666

    Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) IPCC, 2013: summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Stokstad E (2014) Death of the stars. Science 344:464–467

    Article  CAS  PubMed  Google Scholar 

  • Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160(1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Suzuki MM, Satoh N, Nonaka M (2002) C6-like and C3-like molecules from the cephalochordate, amphioxus, suggest a cytolytic complement system in invertebrates. J Mol Evol 54:671–679

    Article  CAS  PubMed  Google Scholar 

  • Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129(8):1945–1955

    Article  CAS  PubMed  Google Scholar 

  • Szabo DT, Loccisano AE (2012) POPs and human health risk assessment. In: Schecter A (ed) Dioxins and health including other persistent organic pollutants and endocrine disruptors, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Taguchi M, Tsutsui S, Nakamura O (2016) Differential count and time-course analysis of the cellular composition of coelomocyte aggregate of the Japanese sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 58:203–209

    Article  CAS  PubMed  Google Scholar 

  • Taketa DA, DeTomaso AW (2015) Botryllus schlosseri allorecognition: tackling the enigma. DCI 48(1):254–265

    CAS  Google Scholar 

  • Tamboline CR, Burke RD (1992) Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells. J Exp Zool 262(1):51–60

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger DP, Clow LA, Gross PS, Smith LC (2004) Constitutive expression and alternative splicing of the exons encoding SCRs in Sp152, the sea urchin homologue of complement factor B. Implications on the evolution of the Bf/C2 gene family. Immunogenetics 56:531–543

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger DP, Buckley KM, Mehta D, Moorjani PG, Smith LC (2006) Unexpected diversity displayed in cDNAs expressed by the immune cells of the purple sea urchin, Strongylocentrotus purpuratus. Physiol Genomics 26:134–144

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger DP, Buckley KM, Brockton V, Ritter NJ, Smith LC (2007) Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, beta-1,3-glucan, and dsRNA. BMC Mol Biol 8:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thys RG, Lehman CE, Pierce LC, Wang Y-H (2014) The role of DNA secondary structures at human chromosomal fragile sites. Mol Biol 3(116):2

    Google Scholar 

  • Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48(10):3645–3654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuoka M, Setoguchi C, Kominami T (2002) Specification and differentiation processes of secondary mesenchyme-derived cells in embryos of the sea urchin Hemicentrotus pulcherrimus. Dev Growth Differ 44(3):239–250

    Article  PubMed  Google Scholar 

  • Tomlinson S (1993) Complement defense mechanisms. Curr Opin Immunol 5(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Turton G, Wardlaw A (1987) Pathogenicity of the marine yeasts Metschnikowia zobelli and Rhodotorula rubra for the sea urchin Echinus esculentus. Aquaculture 67:199–202

    Article  Google Scholar 

  • Ullrich-Lüter EM, Dupont S, Arboleda E, Hausen H, Arnone MI (2011) Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci U S A 108(20):8367–8372

    Article  PubMed  PubMed Central  Google Scholar 

  • Unuma T, Ikeda K, Yamano K, Moriyama A, Ohta H (2007) Zinc-binding property of the major yolk protein in the sea urchin—implications of its role as a zinc transporter for gametogenesis. FEBS J 274(19):4985–4998

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2010) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D2 concept. Expert Rev Proteomics 7:543–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasilenko AA, Kovalchuk SN, Bulgakov AA, Petrova IY, Rasskazov VA (2012) Obtaining and refolding of a recombinant mannan-binding lectin from the holothurian Apostichopus japonicus. Biologiya Morya-Mar Biol 38:72–78

    CAS  Google Scholar 

  • Veldhuizen EJ, Schneider VA, Agustiandari H, van Dijk A, Tjeerdsma-van Bokhoven JL, Bikker FJ, Haagsman HP (2014) Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One 9(4):e95939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vethamany VG, Fung M (1972) The fine structure of coelomocytes of the sea urchin, Strongylocentrotus droebachiensis (Muller, O. F.). Can J Zool 50:77–81

    Article  Google Scholar 

  • Vieira-Pires RS, Morais-Cabral JH (2010) 3(10) helices in channels and other membrane proteins. J Gen Physiol 136:585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijgen J, Abhilash PC, Li YF, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schäffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18(2):152–162

    Article  CAS  Google Scholar 

  • Volanakis JE (1998) Overview of the complement system. In: Volanakis JE, Frank MM (eds) The human complement system in health and disease. Marcel Dekker, New York, pp 9–32

    Chapter  Google Scholar 

  • von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195–201

    Article  Google Scholar 

  • Walmsley M, Ciau-Uitz A, Patient R (2002) Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development 129(24):5683–5695

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu G, Zhang C, Sun S (2005) Main diseases of cultured Apostichopus japonicus: prevention and treatment. Mar Sci 29:1–7

    Google Scholar 

  • Wang D, Claus CL, Vaccarelli G, Braunstein M, Schmitt TM, Zuñiga-Pflücker J-C, Rothenberg EV, Anderson MK (2006) The basic helix–loop–helix transcription factor HEBAlt is expressed in pro-T cells and enhances the generation of T cell precursors. J Immunol 177(1):109–119

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Chou SL, Xu L, Zhu X, Dong N, Shan AS, Chen ZH (2015) High specific selectivity and membrane-active mechanism of the synthetic centrosymmetric alpha-helical peptides with Gly-Gly pairs. Sci Rep 5:15963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  • Wilson DR, Norton DD, Fugmann SD (2008) The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails. Dev Comp Immunol 32:1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, Chilarska PM, Kinston S, Ouwehand WH, Dzierzak E, Pimanda JE, de Bruijn MF, Göttgens B (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Stem Cell 7(4):532–544

    CAS  Google Scholar 

  • Xing K, Yang HS, Chen MY (2008) Morphological and ultrastructural characterization of the coelomocytes in Apostichopus japonicas. Aquat Biol 2(1):85–92

    Article  Google Scholar 

  • Xue Z, Li H, Wang X, Li X, Liu Y, Sun J, Liu C (2015) A review of the immune molecules in the sea cucumber. Fish Shellfish Immunol 44(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81(3):1475–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa A, Sugiura Y (1992) Tachyplesin I as a model peptide for antiparallel beta-sheet DNA binding motif. Nucleic Acids Symp Ser 27:161–162

    CAS  Google Scholar 

  • Yui M, Bayne C (1983) Echinoderm immunity: bacterial clearance by the sea urchin Strongylocentrotus purpuratus. Biol Bull 165:473–485

    Article  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang Y, Rong X (2006) Isolation and identification of causative pathogen for skin ulcerative syndrome in Apostichopus japonicus. J Fish China 30:118–123

    CAS  Google Scholar 

  • Zhang P, Li C, Li Y, Zhang P, Shao Y, Jin C, Li T (2014) Proteomic identification of differentially expressed proteins in sea cucumber Apostichopus japonicus coelomocytes after Vibrio splendidus infection. Dev Comp Immunol 44(2):370–377

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Li L, Guo X, Litman GW, Dishaw LJ, Zhang G (2015) Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep 5:8693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Mattila JP, Holopainen JM, Kinnunen PK (2001) Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Biophys J 81(5):2979–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L, Zhang F, Chang Y (2012) Gene cloning and function analysis of complement B factor-2 of Apostichopus japonicus. Fish Shellfish Immunol 33:504–513

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Sun D, Yang A, Dong Y, Chen Z, Wang X, Guan X, Jiang B, Wang B (2011) Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (Apostichopus japonicus). Fish Shellfish Immunol 31:540–547

    Article  CAS  PubMed  Google Scholar 

  • Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130(3):202–215

    Article  CAS  PubMed  Google Scholar 

  • Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nature Reviews. Mol Cel Biol 7:9–19

    CAS  Google Scholar 

  • Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740

    Article  CAS  PubMed  Google Scholar 

Download references

Dedication

This work is dedicated to Valeria Matranga who passed away too young in April 2016 after a long and courageous battle against cancer. Valeria contributed immensely to our understanding of cellular and molecular immune processes in the sea urchin, Paracentrotus lividus. Her dedicated research on echinoderms led to an understanding of how they interact with their environment and how coelomocytes can be employed to evaluate environmental toxins and pollutants. She and her insight for creative approaches in eco-immuno-toxicology will be missed because her approach to thinking about how to answer difficult scientific questions would have been more and more valuable in the future.

AcknowledgementsResearch by the authors that was the basis of some of the information integrated into this chapter was supported by funding from the US National Science Foundation to LCS, DAR, MO, and JHH; the National Institute on Aging, a Bermuda charitable trust, and The Christian Humann Foundation to AGB; the European Molecular Biology Organization to NF; the Keio Gijuku Academic Development Funds to RF; the Chang Gung Medical Research Program and the Ministry of Science and Technology to SDF; HORIZON 2020 – The EU Framework Programme for Research and Innovation under the Marie Skłodowska-Curie Actions to AP; the Australian Research Council to DAR; the Canadian Institutes for Health Research and the Natural Sciences and Engineering Research Council of Canada to JPR; and the Tromsø Forskninsgstiftelse and the UiT The Arctic University of Norway to KS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Courtney Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, L.C. et al. (2018). Echinodermata: The Complex Immune System in Echinoderms. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_13

Download citation

Publish with us

Policies and ethics