Skip to main content

Arthropoda: Pattern Recognition Proteins in Crustacean Immunity

  • Chapter
  • First Online:
Book cover Advances in Comparative Immunology

Abstract

Crustaceans in general are able to mount a robust defense to microorganisms and parasites. They are equipped with pattern recognition proteins (PRPs) capable of binding microbial molecular patterns such as β-1,3-glucans and different bacterial cell wall components. A variety of different reactions are triggered such as prophenoloxidase activation, opsonin formation, phagocytosis, and encapsulation. The crustacean PRPs constitute a large group of proteins consisting of evolutionary highly conserved proteins with a wide presence in several phyla that act side by side with other PRPs that are possibly unique to crustaceans or even groups of crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alenton RR, Koiwai K, Miyaguchi K et al (2017) Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif. Sci Rep. https://doi.org/10.1038/srep45818

  • Amparyup P, Sutthangkul J, Charoensapsri W et al (2012) Pattern recognition protein binds to lipopolysaccharide and β-1,3-glucan and activates shrimp prophenoloxidase system. J Biol Chem 287:10060–10069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angthong P, Watthanasurorot A, Klinbunga S et al (2010) Cloning and characterization of a melanisation inhibition protein (PmMIP) of the black tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 29:464–468

    Article  CAS  PubMed  Google Scholar 

  • Aspán A, Hall M, Söderhäll K (1990) The effect of endogeneous proteinase inhibitors on the prophenoloxidase activating enzyme, a serine proteinase from crayfish haemocytes. Insect Biochem 20:485–492

    Article  Google Scholar 

  • Barracco MA, Duvic B, Söderhäll K (1991) The β-1,3-glucan-binding protein from the crayfish Pacifastacus leniusculus, when reacted with a β-1,3-glucan, induces spreading and degranulation of crayfish granular cells. Cell Tissue Res 266:491–497

    Article  CAS  Google Scholar 

  • Bi WJ, Li DX, Xu YH et al (2015) Scavenger receptor B protects shrimp from bacteria by enhancing phagocytosis and regulating expression of antimicrobial peptides. Dev Comp Immunol 51:10–21

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition: a new receptor for beta-glucans. Nature 413:36–37

    Article  CAS  PubMed  Google Scholar 

  • Canton J, Neculai D, Grinstein S et al (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634

    Article  CAS  PubMed  Google Scholar 

  • Cerenius L, Liang Z, Duvic B et al (1994) Structure and biological activity of a 1,3-beta-D-glucan-binding protein in crustacean blood. J Biol Chem 269:29462–29467

    CAS  PubMed  Google Scholar 

  • Cerenius L, Luel BL, Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271

    Article  CAS  PubMed  Google Scholar 

  • Chai YM, Zhu Q, Yu SS et al (2012) A novel protein with a fibrinogen-like domain involved in the innate immune response of Marsupenaeus japonicus. Fish Shellfish Immunol 32:307–315

    Article  CAS  PubMed  Google Scholar 

  • Chaosomboon A, Phupet B, Rattanaporn O et al (2017) Lipopolysaccharide- and β-1,3-glucan-binding protein from Fenneropenaeus merguiensis functions as a pattern recognition receptor with a broad specificity for diverse pathogens in the defense against microorganisms. Dev Comp Immunol 67:434–444

    Article  CAS  PubMed  Google Scholar 

  • Cheng WT, Liu CH, Tsai CH et al (2005) Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 18:297–310

    Article  CAS  PubMed  Google Scholar 

  • Coelho JR, Bareto C, Silvera AS et al (2016) A hemocyte-expressed fibrinogen-related protein gene (LvFrep) from the shrimp Litopenaeus vannamei: expression analysis after microbial infection and during larval development. Fish Shellfish Immunol 56:123–126

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulos G, Richman A, Müller HM et al (1997) Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A 94:11508–11513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne DW, Resnick D, Grenberg J et al (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci U S A 91:1863–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvic B, Söderhäll K (1990) Purification and characterization of a beta-1,3-glucan binding protein from plasma of the crayfish Pacifastacus leniusculus. J Biol Chem 265:9327–9332

    CAS  PubMed  Google Scholar 

  • Duvic B, Söderhäll K (1992) Purification and partial characterization of a beta-1,3-glucan-binding-protein membrane receptor from blood cells of the crayfish Pacifastacus leniusculus. Eur J Biochem 207:223–228

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Huang J, Jin M et al (2016) A C-type lectin (MrLec) with high expression in intestine is involved in innate immune response of Macrobrachium rosenbergii. Fish Shellfish Immunol 59:345–350

    Article  CAS  PubMed  Google Scholar 

  • Gollas-Galvan T, Sotelo-Mundo RR, Yepiz-Plascencia G et al (2003) Purification and characterization of alpha 2-macroglobulin from the white shrimp (Penaeus vannamei). Comp Biochem Physiol C 134:431–438

    Google Scholar 

  • Goncalves P, Vernal J, Rosa RD et al (2012) Evidence for a novel biological role for the multifunctional β-1,3-glucan binding protein in shrimp. Mol Immunol 51:363–367

    Article  CAS  PubMed  Google Scholar 

  • Häll L, Söderhäll K (1984) Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish hemocyte lysate. Biochim Biophys Acta 797:99–104

    Article  Google Scholar 

  • Hall M, Söderhäll K (1994) Crayfish α-macroglobulin as a substrate for transglutaminases. Comp Biochem Physiol B 108:65–72

    Article  Google Scholar 

  • Hall M, Vanheusden MC, Söderhäll K (1995) Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting. Biochem Biophys Res Commun 216:939–946

    Article  CAS  PubMed  Google Scholar 

  • Ho PY, Cheng CH, Cheng W (2009) Identification and cloning of the alpha2-macroglobulin of giant freshwater prawn Macrobrachium rosenbergii and its expression in relation with the molt stage and bacteria injection. Fish Shellfish Immunol 26:459–466

    Article  CAS  PubMed  Google Scholar 

  • Hou F, Liu T, Wang Q et al (2017) Identification and characterization of two Croquemort homologues in penaeid shrimp Litopenaeus vannamei. Fish Shellfish Immunol 60:1–5

    Article  CAS  PubMed  Google Scholar 

  • Huang TS, Wang H, Lee SY et al (2000) A cell adhesion protein from the crayfish Pacifastacus leniusculus, a serine proteinase homologue similar to Drosophila masquerade. J Biol Chem 275:9996–10001

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Feng JL, Jin M et al (2016) C-type lectin (MrCTL) from the giant freshwater prawn Macrobrachium rosenbergii participates in innate immunity. Fish Shellfish Immunol 58:136–144

    Article  CAS  PubMed  Google Scholar 

  • Jearaphunt M, Noonin C, Jiravanichpaisal P et al (2014) Caspase-1-like regulation of the proPO-system and role of ppA and caspase-1-like cleaved peptides from proPO in innate immunity. Plos Pathog. https://doi.org/10.1371/journal.ppat.1004059

    Article  PubMed  PubMed Central  Google Scholar 

  • Jearaphunt M, Amparyup P, Sangsuriya P et al (2015) Shrimp serine proteinase homologues PmMasSPH-1 and -2 play a role in the activation of the prophenoloxidase system. PLoS One. https://doi.org/10.1371/journal.pone.0121073

    Article  PubMed  PubMed Central  Google Scholar 

  • Jitvaropas R, Amparyup P, Gross PS et al (2009) Functional characterization of a masquerade-like serine proteinase homologue from the black tiger shrimp Penaeus monodon. Comp Biochem Physiol B 153:236–243

    Article  PubMed  Google Scholar 

  • Kao D, Lai AG, Stamataki E et al (2016) The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. elife 5:1. https://doi.org/10.7554/eLife.20062

    Article  CAS  Google Scholar 

  • Lai AG, Aboobaker AA (2017) Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genomics 18:389. https://doi.org/10.1186/s12864-017-3769-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Söderhäll K (2001) Characterization of a pattern recognition protein, a masquerade-like protein, in the freshwater crayfish Pacifastacus leniusculus. J Immunol 166:7319–7326

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Lee JD, Kravchenko VV et al (1996) Purification and cloning of an inducible Gram-negative bacteria-binding protein from the silk-worm Bombyx mori. Proc Natl Acad Sci U S A 93:7888–7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Wang RG, Söderhäll K (2000) A lipopolysaccharide- and beta-1,3-glucan-binding protein from hemocytes of the freshwater crayfish Pacifastacus leniusculus. Purification, characterization, and cDNA cloning. J Biol Chem 275:1337–1343

    Article  CAS  PubMed  Google Scholar 

  • Levashina EA, Moita LF, Blandin S et al (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li C, Ma C et al (2014) Identification of a C-type lectin with antiviral and antibacterial activity from pacific white shrimp Litopenaeus vannamei. Dev Comp Immunol 46:231–240

    Article  PubMed  Google Scholar 

  • Li CZ, Li HY, Xiao B et al (2017) Identification and functional analysis of a TEP gene from a crustacean reveals its transcriptional regulation mediated by NF-kappa B and JNK pathways and its broad protective roles against multiple pathogens. Dev Comp Immunol 70:45–58

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wu C, Matsuda Y et al (2011) Peptidoglycan activation of the proPO-system without a peptidoglycan receptor protein (PGRP)? Dev Comp Immunol 35:51–61

    Article  CAS  PubMed  Google Scholar 

  • Loker ES, Adema CM, Zhang SM et al (2004) Invertebrate immune systems – not homogenous, not simple, not well understood. Immunol Rev 198:10–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo T, Yang H, Li F et al (2006) Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Dev Comp Immunol 30:607–617

    Article  CAS  PubMed  Google Scholar 

  • Ma HM, Wang B, Zhang JQ et al (2010) Multiple forms of alpha-2 macroglobulin in shrimp Fenneropenaeus chinesis and their transcriptional response to WSSV or Vibrio pathogen infection. Dev Comp Immunol 34:677–684

    Article  CAS  PubMed  Google Scholar 

  • McTaggart SJ, Conlon C, Colbourne JK et al (2009) The components of the Daphnia pulex immune system as revealed by complete genome sequencing. BMC Genomics 10:175. https://doi.org/10.1186/1471-2164-10-175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekata T, Okugawa S, Inada M et al (2011) Class B scavenger receptor, Croquemort from kuruma shrimp Marsupenaeus japonicus: molecular cloning and characterization. Mol Cell Probes 25:94–100

    Article  CAS  PubMed  Google Scholar 

  • Pees B, Yang W, Zarate-Poles A et al (2016) High innate immune specificity through diversified C-type lectin-like domain proteins in invertebrates. J Innate Immun 8:129–142

    Article  CAS  PubMed  Google Scholar 

  • Perazzolo LM, Bachere E, Rosa RD et al (2011) Alpha2-macroglobulin from an Atlantic shrimp: biochemical characterization, sub-cellular localization and gene expression upon fungal challenge. Fish Shellfish Immunol 31:938–943

    Article  CAS  PubMed  Google Scholar 

  • Ponprateep S, Vatanavicharn T, Lo CF et al (2017) Alpha-2-macroglobulin is a modulator of prophenoloxidase system in pacific white shrimp Litopenaeus vannamai. Fish Shellfish Immunol 62:68–74

    Article  CAS  PubMed  Google Scholar 

  • Rattanachai A, Hirono I, Ohira T et al (2004) Molecular cloning and expression analysis of alpha 2-macroglobulin in the kuruma shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 16:599–611

    Article  CAS  PubMed  Google Scholar 

  • Roux MM, Pain A, Klimpel KR et al (2002) The lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J Virol 76:7140–7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söderhäll K (1981) Fungal cell wall beta-1,3-glucans induce clotting and phenoloxidase attachment to foreign surfaces of crayfish hemocyte lysate. Dev Comp Immunol 5:565–573

    Article  PubMed  Google Scholar 

  • Söderhäll K, Unestam T (1979) Activation of serum prophenoloxidase in arthropod immunity. The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase. Can J Microbiol 25:406–414

    Article  PubMed  Google Scholar 

  • Sritunyalucksana K, Lee SY, Söderhäll K (2002) A beta-1,3-glucan binding protein from the black tiger shrimp, Penaeus monodon. Dev Comp Immunol 26:237–245

    Article  CAS  PubMed  Google Scholar 

  • Stroschein-Stevenson SL, Foley E, O’Farrell PH et al (2006) Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. https://doi.org/10.1371/journal.pbio.0040004

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun JJ, Lan JF, Shi XZ et al (2014) A fibrinogen-related protein (FREP) is involved in the antibacterial immunity of Marsupenaeus japonicas. Fish Shellfish Immunol 39:296–304

    Article  CAS  PubMed  Google Scholar 

  • Thörnqvist PO, Johansson MW, Söderhäll K (1994) Opsonic activity of cell adhesion proteins and beta-1,3-glucan binding proteins from two crustaceans. Dev Comp Immunol 18:3–12

    Article  PubMed  Google Scholar 

  • Udompetcharaporn A, Kingkamon J, Senapin S et al (2014) Identification and characterization of a QM protein as a possible peptidoglycan recognition protein (PGRP) from the giant tiger shrimp Penaeus monodon. Dev Comp Immunol 46:146–154

    Article  CAS  PubMed  Google Scholar 

  • Unestam T, Söderhäll K (1977) Soluble fragments from fungal cell walls elicit defence reactions in crayfish. Nature 267:45–46

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Wang JX (2013) Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish Shellfish Immunol 34:981–989

    Article  PubMed  Google Scholar 

  • Wang S, Chen AJ, Shi LJ et al (2012) TRBP and eIF6 homologue in Marsupenaeus japonicus play crucial roles in antiviral response. PLoS One:e30057. https://doi.org/10.1371/journal.pone.0030057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XW, Zhao XF, Wang JX (2014a) C-type lectin binds to beta-integrin to promote hemocytic phagocytosis in an invertebrate. J Biol Chem 289:2405–2414

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Xu JD, Zhao XF et al (2014b) A shrimp C-type lectin inhibits proliferation of the hemolymph microbiota by maintaining the expression of antimicrobial peptides. J Biol Chem 289:11779–11790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Wang L, Huang M et al (2016) A galectin from Eriocheir sinensis functions as pattern recognition receptor enhancing microbe agglutination and haemocytes encapsulation. Fish Shellfish Immunol 55:10–20

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Söderhäll K, Söderhäll I (2011) Two novel ficolin-like proteins act as pattern recognition receptors for invading pathogens in the freshwater crayfish Pacifastacus leniusculus. Proteomics 11:2249–2264

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Noonin C, Söderhäll I et al (2012) An insect TEP in a crustacean is specific for cuticular tissues and involved in intestinal defense. Insect Biochem Mol Biol 42:71–80

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Wang L, Wang XW et al (2014) L-type lectin from the kuruma shrimp Marsupenaeus japonicus promotes hemocyte phagocytosis. Dev Comp Immunol 44:397–405

    Article  CAS  PubMed  Google Scholar 

  • Yang MC, Shi XZ, Yang HT et al (2016) Scavenger receptor C mediates phagocytosis of white spot syndrome virus and restricts virus proliferation in shrimp. Plos Pathog:e1006127. https://doi.org/10.1371/journal.ppat.1006127

    Article  PubMed  PubMed Central  Google Scholar 

  • Yepiz-Plascencia G, Vargas-Albores F, Jimenez-Vega F et al (1998) Shrimp plasma HDL and β-glucan binding protein (BGBP): comparison of biochemical characteristics. Comp Biochem Biophys B 121:309–314

    Article  CAS  Google Scholar 

  • Yu XQ, Jiang H, Wang Y et al (2003) Nonproteolytic serine proteinase homologs involved in phenoloxidase activation in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 33:197–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang XW, Wang XW, Sun C et al (2011) C-type lectin from red swamp crayfish Procambarus clarkii participates in cellular immune response. Arch Insect Biochem Physiol 76:168–184

    Article  CAS  PubMed  Google Scholar 

  • Zhang QX, Liu HP, Chen RY et al (2013a) Identification of a serine proteinase homolog (Sp-SPH) involved in immune defense in the mud crab Scylla paramamosain. PLoS One:e63787. https://doi.org/10.1371/journal.pone.0063787

  • Zhang XW, Liu YY, Mu Y et al (2013b) Overexpression of a C-type lectin enhances bacterial resistance in red swamp crayfish Procambarus clarkii. Fish Shellfish Immunol 34:1112–1118

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wang XQ, Jiang HS et al (2014a) Calnexin functions in antibacterial immunity of Marsupenaeus japonicas. Dev Comp Immunol 46:356–363

    Article  CAS  PubMed  Google Scholar 

  • Zhang XW, Wang XW, Huang Y et al (2014b) Cloning and characterization of two different ficolins from the giant prawn Macrobrachium rosenbergii. Dev Comp Immunol 44:359–369

    Article  CAS  PubMed  Google Scholar 

  • Zhang XW, Wang Y, Wang XW et al (2016) A C-type lectin with an immunoglobulin-like domain promotes phagocytosis of hemocytes in crayfish Procambarus clarkii. Sci Rep 6:2994. https://doi.org/10.1038/srep2994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lage Cerenius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cerenius, L., Söderhäll, K. (2018). Arthropoda: Pattern Recognition Proteins in Crustacean Immunity. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_10

Download citation

Publish with us

Policies and ethics