Osteoarthritis: Trauma vs Disease

  • Gema Jiménez
  • Jesús Cobo-Molinos
  • Cristina Antich
  • Elena López-Ruiz
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)

Abstract

Osteoarthritis (OA) is the most prevalent joint disease characterized by pain and degenerative lesions of the cartilage, subchondral bone, and other joint tissues. The causes of OA remain incompletely understood. Over the years, it has become recognized that OA is a multifactorial disease. In particular, aging and trauma are the main risk factors identified for the development of OA; however, other factors such as genetic predisposition, obesity, inflammation, gender and hormones, or metabolic syndrome contribute to OA development and lead to a more severe outcome. While this disease mainly affects people older than 60 years, OA developed after joint trauma affects all range ages and has a particular impact on young individuals and people who have highest levels of physical activity such as athletes. Traumatic injury to the joint often results in joint instability or intra-articular fractures which lead to posttraumatic osteoarthritis (PTOA). In response to injury, several molecular mechanisms are activated, increasing the production and activation of different factors that contribute to the progression of OA.

In this chapter, we have focused on the interactions and contribution of the multiple factors involved in joint destruction and progression of OA. In addition, we overview the main changes and molecular mechanisms related to OA pathogenesis.

Keywords

Osteoarthritis Posttraumatic osteoarthritis Risk factors Joint trauma 

Notes

Acknowledgments

This work was supported by Fundación Progreso y Salud (Junta de Andalucía, project number PIN-0379-2016) and by the Ministerio de Economía, Industria y Competitividad (FEDER funds, project RTC-2016-5451-1). G.J. acknowledges the Junta de Andalucía for providing a postdoctoral fellowship. C.A. acknowledges the predoctoral fellowship from the Spanish Ministry of Education, Culture and Sports (BOE-A-2014-13539). Also, E.L-R. acknowledges the MINECO for providing a postdoctoral fellowship through the project RTC-2016-5451-1.

References

  1. 1.
    Abrams GD et al (2013) Trends in meniscus repair and meniscectomy in the United States, 2005-2011. Am J Sports Med 41(10):2333–2339.  https://doi.org/10.1177/0363546513495641 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ahmad J, Maltenfort M (2017) Arthroscopic treatment of osteochondral lesions of the talus with allograft cartilage matrix. Foot Ankle Int 38(8):855–862.  https://doi.org/10.1177/1071100717709571 CrossRefPubMedGoogle Scholar
  3. 3.
    Aigner T, Richter W (2012) OA in 2011: Age-related OA? A concept emerging from infancy? Nat Rev Rheumatol 8(2):70.  https://doi.org/10.1038/nrrheum.2011.206 CrossRefPubMedGoogle Scholar
  4. 4.
    Altman R et al (1991) The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum 34(5):505–514. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2025304 (Accessed: 12 July 2017)CrossRefGoogle Scholar
  5. 5.
    Amoako AO, Pujalte GGA (2014) Osteoarthritis in young, active, and athletic individuals. Clinical medicine insights. Arthritis Musculoskeletal Dis 7:27–32.  https://doi.org/10.4137/CMAMD.S14386 CrossRefGoogle Scholar
  6. 6.
    Anderson DD et al (2011a) Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res 29(6):802–809.  https://doi.org/10.1002/jor.21359 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Badalà F, Nouri-mahdavi K, Raoof DA (2008) The role of synovitis in osteoarthritis pathogenesis. Bone 144(5):724–732.  https://doi.org/10.1038/jid.2014.371 CrossRefGoogle Scholar
  8. 8.
    Bauer KL, Polousky JD (2017) Management of Osteochondritis Dissecans Lesions of the knee, elbow and ankle. Clin Sports Med 36(3):469–487.  https://doi.org/10.1016/j.csm.2017.02.005 CrossRefPubMedGoogle Scholar
  9. 9.
    Berenbaum F (2012) Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype. Postgrad Med J 88(1038):240–242.  https://doi.org/10.1136/pgmj.2010.146399rep CrossRefPubMedGoogle Scholar
  10. 10.
    Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil 21(1):16–21.  https://doi.org/10.1016/j.joca.2012.11.012 CrossRefPubMedGoogle Scholar
  11. 11.
    Bliddal H, Christensen R (2006) The management of osteoarthritis in the obese patient: practical considerations and guidelines for therapy. Obes Rev 7(4):323–331.  https://doi.org/10.1111/j.1467-789X.2006.00252.x CrossRefPubMedGoogle Scholar
  12. 12.
    Bobacz K et al (2003) Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Arthritis Rheum 48(9):2501–2508.  https://doi.org/10.1002/art.11248 CrossRefPubMedGoogle Scholar
  13. 13.
    Boesen M et al (2017) Osteoarthritis year in review 2016: imaging. Osteoarthr Cartil 25(2):216–226.  https://doi.org/10.1016/j.joca.2016.12.009 CrossRefPubMedGoogle Scholar
  14. 14.
    Borgohain B et al (2014) Risks of concomitant trauma to the knee in lower limb long bone shaft fractures: a retrospective analysis from a prospective study population. Adv Biomed Res 3(1):49.  https://doi.org/10.4103/2277-9175.125764 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Botter SM et al (2011) Analysis of osteoarthritis in a mouse model of the progeroid human DNA repair syndrome trichothiodystrophy. Age 33(3):247–260.  https://doi.org/10.1007/s11357-010-9175-3 CrossRefPubMedGoogle Scholar
  16. 16.
    Brittberg M et al (2016a) Cartilage repair in the degenerative ageing knee. Acta Orthop 87(sup363):26–38.  https://doi.org/10.1080/17453674.2016.1265877 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brown TD et al (2006) Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 20(10):739–744.  https://doi.org/10.1097/01.bot.0000246468.80635.ef CrossRefPubMedGoogle Scholar
  18. 18.
    Buckland J (2010) Osteoarthritis: blocking hedgehog signaling might have therapeutic potential in OA. Nat Rev Rheumatol 6(2):61–61.  https://doi.org/10.1038/nrrheum.2009.270 CrossRefPubMedGoogle Scholar
  19. 19.
    Castaño Betancourt MC et al (2012) Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Nat Acad Sci USA 109(21):8218–8223.  https://doi.org/10.1073/pnas.1119899109 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cecil DL et al (2005) Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol (Baltimore, Md: 1950) 175(12):8296–8302. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16339570 (Accessed: 25 June 2017)CrossRefGoogle Scholar
  21. 21.
    Chapman K et al (1999) Osteoarthritis-susceptibility locus on chromosome 11q, detected by linkage. Am J Hum Genet 65:167–174. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1378087/pdf/10364529.pdf (Accessed: 28 June 2017)CrossRefGoogle Scholar
  22. 22.
    Chen D et al (2017a) Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 5(august 2016):16044.  https://doi.org/10.1038/boneres.2016.44 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Christensen R et al (2007) Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: a systematic review and meta-analysis. Ann Rheumatic Dis BMJ Pub Group 66(4):433–439.  https://doi.org/10.1136/ard.2006.065904 CrossRefGoogle Scholar
  24. 24.
    Chubinskaya S et al (2002) Age-related changes in cartilage endogenous osteogenic protein-1 (OP-1). Biochim Biophys Acta (BBA) - Mol Basis Dis 1588(2):126–134.  https://doi.org/10.1016/S0925-4439(02)00158-8 CrossRefGoogle Scholar
  25. 25.
    Chubinskaya S et al (2015) Articular Cartilage Injury and Potential Remedies. J Orthopaed Trauma 29(Suppl 12):S47–S52.  https://doi.org/10.1097/BOT.0000000000000462 CrossRefGoogle Scholar
  26. 26.
    Cicuttini FM, Spector T, Baker J (1997) Risk factors for osteoarthritis in the tibiofemoral and patellofemoral joints of the knee. J Rheumatol 24(6):1164–1167. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9195526 (Accessed: 16 July 2017)PubMedGoogle Scholar
  27. 27.
    Clockaerts S et al (2012) Statin use is associated with reduced incidence and progression of knee osteoarthritis in the Rotterdam study. Ann Rheum Dis 71(5):642–647.  https://doi.org/10.1136/annrheumdis-2011-200092 CrossRefPubMedGoogle Scholar
  28. 28.
    Conde J et al (2011a) Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis 2011(2090–1992 (electronic)):203901.  https://doi.org/10.1155/2011/203901 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Courties A, Sellam J (2016) Osteoarthritis and type 2 diabetes mellitus: what are the links? Diabetes Res Clin Pract 122:198–206.  https://doi.org/10.1016/j.diabres.2016.10.021 CrossRefPubMedGoogle Scholar
  30. 30.
    Cramer C et al (2010) Persistent high glucose concentrations Alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev 19(12):1875–1884.  https://doi.org/10.1089/scd.2010.0009 CrossRefPubMedGoogle Scholar
  31. 31.
    Day-Williams A et al (2011) A variant in MCF2L is associated with osteoarthritis. Am J Hum Genet 89(3):446–450.  https://doi.org/10.1016/j.ajhg.2011.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    DeGroot J et al (2004) Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum 50(4):1207–1215.  https://doi.org/10.1002/art.20170 CrossRefPubMedGoogle Scholar
  33. 33.
    Ding C et al (2012) Body fat is associated with increased and lean mass with decreased knee cartilage loss in older adults: a prospective cohort study. Int J Obes 37:822–827.  https://doi.org/10.1038/ijo.2012.136 CrossRefGoogle Scholar
  34. 34.
    Engstrm G et al (2008) 325 C-reactive protein metabolic syndrome and incidence of severe hip and knee osteoarthritis. A population-based cohort study. Osteoarthr Cartil 16:S143–S144.  https://doi.org/10.1016/S1063-4584(08)60369-6 CrossRefGoogle Scholar
  35. 35.
    Eymard F et al (2015) Diabetes is a risk factor for knee osteoarthritis progression. Osteoarthr Cartil 23(6):851–859.  https://doi.org/10.1016/j.joca.2015.01.013 CrossRefPubMedGoogle Scholar
  36. 36.
    Felson DT et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133(8):635.  https://doi.org/10.7326/0003-4819-133-8-200010170-00016 CrossRefPubMedGoogle Scholar
  37. 37.
    Felson DT et al (2016) Synovitis and the risk of knee osteoarthritis: the most study HHS public access. Osteoarthr Cartil 24(3):458–464.  https://doi.org/10.1016/j.joca.2015.09.013 CrossRefPubMedGoogle Scholar
  38. 38.
    Findlay DM (2007) Vascular pathology and osteoarthritis. Rheumatology 46(12):1763–1768.  https://doi.org/10.1093/rheumatology/kem191 CrossRefPubMedGoogle Scholar
  39. 39.
    Findlay DM, Kuliwaba JS (2016) Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res 4:16028.  https://doi.org/10.1038/boneres.2016.28 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Forster T et al (2004) Finer linkage mapping of primary osteoarthritis susceptibility loci on chromosomes 4 and 16 in families with affected women. Arthri Rheumat 50(1):98–102.  https://doi.org/10.1002/art.11427 CrossRefGoogle Scholar
  41. 41.
    Funck-Brentano T, Cohen-Solal M (2015) Subchondral bone and osteoarthritis. Curr Opin Rheumatol 27(4):420–426.  https://doi.org/10.1097/BOR.0000000000000181 CrossRefPubMedGoogle Scholar
  42. 42.
    Gkretsi V, Simopoulou T, Tsezou A (2011) Lipid metabolism and osteoarthritis: lessons from atherosclerosis. Prog Lipid Res 50(2):133–140.  https://doi.org/10.1016/j.plipres.2010.11.001 CrossRefPubMedGoogle Scholar
  43. 43.
    Goldring MB et al. (2011) Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cells Mat 21: 202–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21351054 (Accessed: 11 July 2017)CrossRefGoogle Scholar
  44. 44.
    Greene MA, Loeser RF (2015) Aging-related inflammation in osteoarthritis. Osteoarthr Cartil 23(11):1966–1971.  https://doi.org/10.1016/j.joca.2015.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hannan MT et al (1990) Estrogen use and radiographic osteoarthritis of the knee in women. Arthritis Rheum 33(4):525–532.  https://doi.org/10.1002/art.1780330410 CrossRefPubMedGoogle Scholar
  46. 46.
    Harbo M et al (2012) The distribution pattern of critically short telomeres in human osteoarthritic knees. Arthrit Res Therapy 14(1):R12.  https://doi.org/10.1186/ar3687 CrossRefGoogle Scholar
  47. 47.
    Hasson CJ, Caldwell GE, Van Emmerik REA (2009) NIH public access. Mot Control 27(4):590–609.  https://doi.org/10.1016/j.humov.2008.02.015.Changes CrossRefGoogle Scholar
  48. 48.
    Henrotin YE, Bruckner P, Pujol JPL (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil 11(10):747–755.  https://doi.org/10.1016/S1063-4584(03)00150-X CrossRefPubMedGoogle Scholar
  49. 49.
    Hiraiwa H et al (2011) Inflammatory effect of advanced glycation end products on human meniscal cells from osteoarthritic knees. Inflamm Res 60(11):1039–1048.  https://doi.org/10.1007/s00011-011-0365-y CrossRefPubMedGoogle Scholar
  50. 50.
    Homandberg GA (2001) Cartilage damage by matrix degradation products: fibronectin fragments. Clin Orthopaed Relat Res (391 Suppl): S100–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11603694 (Accessed: 16 July 2017)CrossRefGoogle Scholar
  51. 51.
    Hosaka Y et al (2013) Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc Natl Acad Sci U S A 110(5):1875–1880.  https://doi.org/10.1073/pnas.1207458110 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867.  https://doi.org/10.1038/nature05485 CrossRefPubMedGoogle Scholar
  53. 53.
    Kapoor M et al (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7(1):33–42.  https://doi.org/10.1038/nrrheum.2010.196 CrossRefPubMedGoogle Scholar
  54. 54.
    Kerkhof HJM et al (2010) A genome-wide association study identifies a locus on chromosome 7q22 to influence susceptibility for osteoarthritis. Arthritis Rheum 62(2):NA.  https://doi.org/10.1002/art.27184 CrossRefGoogle Scholar
  55. 55.
    Kim J et al (2010) Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthr Cartil 18(3):424–432.  https://doi.org/10.1016/j.joca.2009.09.008 CrossRefPubMedGoogle Scholar
  56. 56.
    Kirk KM et al (2002) The validity and heritability of self-report osteoarthritis in an Australian older twin sample. Twin Res 5(2):98–106.  https://doi.org/10.1375/1369052022965 CrossRefPubMedGoogle Scholar
  57. 57.
    van der Kraan PM, Blaney Davidson EN, van den Berg WB (2010) A role for age-related changes in TGF? Signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res Therapy 12(1):201.  https://doi.org/10.1186/ar2896 CrossRefGoogle Scholar
  58. 58.
    Kuijt M-TK et al (2012) Knee and ankle osteoarthritis in former elite soccer players: a systematic review of the recent literature. J Sci Med Sport 15(6):480–487.  https://doi.org/10.1016/j.jsams.2012.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lawyer TJ et al (2014) Prevalence of post-traumatic osteoarthritis in morbidly obese patients after acetabular fracture fixation. J Long-Term Eff Med Implants 24(2–3):225–231. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25272222 (Accessed: 1 July 2017)CrossRefGoogle Scholar
  60. 60.
    Lee HH, Chu CR (2012) Clinical and basic science of cartilage injury and arthritis in the Football (Soccer) Athlete. Cartilage 3(1 Suppl):63S–68S.  https://doi.org/10.1177/1947603511426882 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lee R, Kean WF (2012) Obesity and knee osteoarthritis. InflammoPharmacology 20(2):53–58.  https://doi.org/10.1007/s10787-011-0118-0 CrossRefPubMedGoogle Scholar
  62. 62.
    Lewis JS et al (2011) Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee. Osteoarthr Cartil 19(7):864–873.  https://doi.org/10.1016/j.joca.2011.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Li H et al (2017) Treatment of talus osteochondral defects in chronic lateral unstable ankles: small-sized lateral chondral lesions had good clinical outcomes. Knee Surg Sports Traumatol Arthrosc.  https://doi.org/10.1007/s00167-017-4591-x
  64. 64.
    Loeser RF et al (2000) Reduction in the chondrocyte response to insulin?Like growth factor 1 in aging and osteoarthritis: studies in a non?Human primate model of naturally occurring disease. Arthritis Rheum 43(9):2110–2120.  https://doi.org/10.1002/1529-0131(200009)43:9<2110::AID-ANR23>3.0.CO;2-U CrossRefPubMedGoogle Scholar
  65. 65.
    Loeser RF (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum 54(5):1357–1360.  https://doi.org/10.1002/art.21813 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Loeser RF (2011) Aging and osteoarthritis. Current Opinion Rheum 23(5):492–496.  https://doi.org/10.1097/BOR.0b013e3283494005 CrossRefGoogle Scholar
  67. 67.
    Loeser RF et al (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64(6):1697–1707.  https://doi.org/10.1002/art.34453 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Loeser RF et al (2014) Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1. Arthritis Rheum 66(8):2201–2209.  https://doi.org/10.1002/art.38641 CrossRefGoogle Scholar
  69. 69.
    Lotz MK (2010a) New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Therapy 12(3):211.  https://doi.org/10.1186/ar3046 CrossRefGoogle Scholar
  70. 70.
    Lotz M, Loeser RF (2012) Effects of aging on articular cartilage homeostasis. Bone 51(2):241–248.  https://doi.org/10.1016/j.bone.2012.03.023 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
  72. 72.
    Loughlin J et al (2002) Finer linkage mapping of a primary hip osteoarthritis susceptibility locus on chromosome 6. Eur J Hum Genet 10(9):562–568.  https://doi.org/10.1038/sj.ejhg.5200848 CrossRefPubMedGoogle Scholar
  73. 73.
    MacGregor AJ et al (2000) The genetic contribution to radiographic hip osteoarthritis in women: results of a classic twin study. Arthritis Rheum 43(11):2410–2416.  https://doi.org/10.1002/1529-0131(200011)43:11<2410::AID-ANR6>3.0.CO;2-E CrossRefPubMedGoogle Scholar
  74. 74.
    Maquet PG, Pelzer GA (1977) Evolution of the maximum stress in osteo-arthritis of the knee. J Biomech 10(2):107–117. Available at: http://www.ncbi.nlm.nih.gov/pubmed/858709 (Accessed: 26 June 2017)CrossRefGoogle Scholar
  75. 75.
    Mitsuyama H et al (2007) Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis. Osteoarthr Cartil 15(5):559–565.  https://doi.org/10.1016/j.joca.2006.10.017 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Miyamoto Y et al (2008) Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat Genet 40(8):994–998.  https://doi.org/10.1038/ng.176 CrossRefPubMedGoogle Scholar
  77. 77.
    Moskowitz RW (2009) The burden of osteoarthritis: clinical and quality-of-life issues. Am J Manag Care 15(8 Suppl):S223–S229. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19817508 (Accessed: 10 July 2017)PubMedGoogle Scholar
  78. 78.
    Nah SS et al (2008) Effects of advanced glycation end products on the expression of COX-2, PGE2 and NO in human osteoarthritic chondrocytes. Rheumatology 47(4):425–431.  https://doi.org/10.1093/rheumatology/kem376 CrossRefPubMedGoogle Scholar
  79. 79.
    Nevitt MC et al. (1996) Association of estrogen replacement therapy with the risk of osteoarthritis of the hip in elderly white women. Study of Osteoporotic Fractures Research Group. Arch Intern Med 156(18):2073-80. Avalaible at: https://www.ncbi.nlm.nih.gov/pubmed/8862099 CrossRefGoogle Scholar
  80. 80.
    Olson SA et al (2015) Therapeutic opportunities to prevent post-traumatic arthritis: lessons from the natural history of arthritis after articular fracture. J Orthop Res 33(9):1266–1277.  https://doi.org/10.1002/jor.22940 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Onur TS et al (2014) Joint instability and cartilage compression in a mouse model of posttraumatic osteoarthritis. J Orthopaed Res: Off Pub Orthopaed Res Soc 32(2):318–323.  https://doi.org/10.1002/jor.22509 CrossRefGoogle Scholar
  82. 82.
    Pascual-Garrido C, McNickle AG, Cole BJ (2009) Surgical treatment options for osteochondritis dissecans of the knee. Sports Health 1(4):326–334.  https://doi.org/10.1177/1941738109334216 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Pelletier JP et al (2008) A new non-invasive method to assess synovitis severity in relation to symptoms and cartilage volume loss in knee osteoarthritis patients using MRI. Osteoarthr Cartil 16(SUPPL. 3):8–13.  https://doi.org/10.1016/S1063-4584(08)60004-7 CrossRefGoogle Scholar
  84. 84.
    Porter SE et al (2008) Complications of acetabular fracture surgery in morbidly obese patients. J Orthop Trauma 22(9):589–594.  https://doi.org/10.1097/BOT.0b013e318188d6c3 CrossRefPubMedGoogle Scholar
  85. 85.
    Pottie P et al (2006) Obesity and osteoarthritis: more complex than predicted! Ann Rheum Dis 65(11):1403–1405.  https://doi.org/10.1136/ard.2006.061994 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Puenpatom RA, Victor TW (2009) Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med 121(6):9–20.  https://doi.org/10.3810/pgm.2009.11.2073 CrossRefPubMedGoogle Scholar
  87. 87.
    Puig-Junoy J, Ruiz Zamora A (2015) Socio-economic costs of osteoarthritis: a systematic review of cost-of-illness studies. Semin Arthritis Rheum 44(5):531–541.  https://doi.org/10.1016/j.semarthrit.2014.10.012 CrossRefPubMedGoogle Scholar
  88. 88.
    Qi C, Changlin H, Zefeng H (2007) Matrix metalloproteinases and inhibitor in knee synovial fluid as cartilage biomarkers in rabbits: the effect of high-intensity jumping exercise. J Surg Res 140(1):149–157.  https://doi.org/10.1016/j.jss.2006.12.556 CrossRefPubMedGoogle Scholar
  89. 89.
    Reynard LN, Loughlin J (2013) The genetics and functional analysis of primary osteoarthritis susceptibility. Expert Rev Mol Med 15:e2.  https://doi.org/10.1017/erm.2013.4 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Richette P et al (2007) Oestrogens inhibit interleukin 1beta-mediated nitric oxide synthase expression in articular chondrocytes through nuclear factor-kappa B impairment. Ann Rheum Dis 66(3):345–350.  https://doi.org/10.1136/ard.2006.059550 CrossRefPubMedGoogle Scholar
  91. 91.
    Rigoglou S, Papavassiliou AG (2013) The NF-κB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 45(11):2580–2584.  https://doi.org/10.1016/j.biocel.2013.08.018 CrossRefPubMedGoogle Scholar
  92. 92.
    Rodriguez-Lopez J et al (2008) Genetic variation including nonsynonymous polymorphisms of a major aggrecanase, ADAMTS-5, in susceptibility to osteoarthritis. Arthritis Rheum 58(2):435–441.  https://doi.org/10.1002/art.23201 CrossRefPubMedGoogle Scholar
  93. 93.
    Roos EM, Arden NK (2015) Strategies for the prevention of knee osteoarthritis. Nat Rev Rheumatol 12(2):92–101.  https://doi.org/10.1038/nrrheum.2015.135 CrossRefPubMedGoogle Scholar
  94. 94.
    Roos H et al (1995) Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil 3(4):261–267. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8689461 (Accessed: 1 July 2017)CrossRefGoogle Scholar
  95. 95.
    Säämänen A-M et al (2000) Osteoarthritis-like lesions in transgenic mice harboring a small deletion mutation in type II collagen gene. Osteoarthr Cartil 8(4):248–257.  https://doi.org/10.1053/joca.2000.0298 CrossRefPubMedGoogle Scholar
  96. 96.
    Salminen H et al (2000) Up-regulation of cartilage oligomeric matrix protein at the onset of articular cartilage degeneration in a transgenic mouse model of osteoarthritis. Arthritis Rheum 43(8):1742–1748.  https://doi.org/10.1002/1529-0131(200008)43:8<1742::AID-ANR10>3.0.CO;2-U CrossRefPubMedGoogle Scholar
  97. 97.
    Sauter E et al (2012) Cytoskeletal dissolution blocks oxidant release and cell death in injured cartilage. J Orthop Res 30(4):593–598.  https://doi.org/10.1002/jor.21552 CrossRefPubMedGoogle Scholar
  98. 98.
    Schmal H et al (2012) Expression of BMP-receptor type 1A correlates with progress of osteoarthritis in human knee joints with focal cartilage lesions. Cytotherapy 14(7):868–876.  https://doi.org/10.3109/14653249.2012.681039 CrossRefPubMedGoogle Scholar
  99. 99.
    Seon JK, Song EK, Park SJ (2006) Osteoarthritis after anterior cruciate ligament reconstruction using a patellar tendon autograft. Int Orthop 30(2): 94–8.  https://doi.org/10.1007/s00264-005-0036-0 CrossRefGoogle Scholar
  100. 100.
    Sigurdsson U et al. (2016) Delayed gadolinium-enhanced MRI of meniscus (dGEMRIM) and cartilage (dGEMRIC) in healthy knees and in knees with different stages of meniscus pathology. BMC Musculoskeletal Dis 17(1): 406.  https://doi.org/10.1186/s12891-016-1244-z
  101. 101.
    Silman AJ, Newman J (1996) Obstetric and gynaecological factors in susceptibility to peripheral joint osteoarthritis. Ann Rheum Dis 55(9):671–673. Available at: http://ard.bmj.com/content/55/9/671.full.pdf CrossRefGoogle Scholar
  102. 102.
    Singh G et al (2002) Prevalence of cardiovascular disease risk factors among US adults with self reported osteoarthritis. Am J Manag Care 8(15):383–391Google Scholar
  103. 103.
    Sokolove J, Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease 5(2):77–94.  https://doi.org/10.1177/1759720X12467868 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports health 1(6):461–468.  https://doi.org/10.1177/1941738109350438 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Sowers M et al (2009) Knee osteoarthritis in obese women with cardiometabolic clustering. Arthritis Care Res 61(10):1328–1336.  https://doi.org/10.1002/art.24739 CrossRefGoogle Scholar
  106. 106.
    Spector TD et al (1996) Genetic influences on osteoarthritis in women: a twin study. BMJ 312(7036):940–943. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8616305 (Accessed: 27 June 2017)CrossRefGoogle Scholar
  107. 107.
    Srikanth VK et al (2005) A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr Cartil 13(9):769–781.  https://doi.org/10.1016/j.joca.2005.04.014 CrossRefPubMedGoogle Scholar
  108. 108.
    Steenvoorden MMC et al (2006) Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum 54(1):253–263.  https://doi.org/10.1002/art.21523 CrossRefPubMedGoogle Scholar
  109. 109.
    Thomas CM et al (2011) Chondrocyte death by apoptosis is associated with the initiation and severity of articular cartilage degradation. Int J Rheum Dis 14(2):191–198.  https://doi.org/10.1111/j.1756-185X.2010.01578.x CrossRefPubMedGoogle Scholar
  110. 110.
    Thomas E, Peat G, Croft P (2014) Defining and mapping the person with osteoarthritis for population studies and public health. Rheumatology (Oxford) 53(2):338–345.  https://doi.org/10.1093/rheumatology/ket346 CrossRefGoogle Scholar
  111. 111.
    Toh WS et al (2016) Cellular senescence in aging and osteoarthritis. Acta Orthopaed 87(sup363):6–14.  https://doi.org/10.1080/17453674.2016.1235087 CrossRefGoogle Scholar
  112. 112.
    Tornero-Esteban P et al (2015) Altered expression of Wnt signaling pathway components in osteogenesis of mesenchymal stem cells in osteoarthritis patients. PLoS One 10(9):e0137170.  https://doi.org/10.1371/journal.pone.0137170 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Tsai TL, Manner PA, Li WJ (2013) Regulation of mesenchymal stem cell chondrogenesis by glucose through protein kinase C/transforming growth factor signaling. Osteoarthr Cartil 21(2):368–376.  https://doi.org/10.1016/j.joca.2012.11.001 CrossRefPubMedGoogle Scholar
  114. 114.
    Valdes AM et al (2010) Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis. Arthritis Rheum 62(8):2347–2352.  https://doi.org/10.1002/art.27530 CrossRefPubMedGoogle Scholar
  115. 115.
    Velasquez MT, Katz JD (2010) Osteoarthritis: another component of metabolic syndrome? Metab Syndr Relat Disord 8(4):295–305.  https://doi.org/10.1089/met.2009.0110 CrossRefPubMedGoogle Scholar
  116. 116.
    Verzijl N et al (2003) AGEing and osteoarthritis: a different perspective. Curr Opin Rheumatol 15(5):616–622. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12960490 (Accessed: 25 June 2017)CrossRefGoogle Scholar
  117. 117.
    Wainwright C et al (2011) Age at hip or knee joint replacement surgery predicts likelihood of revision surgery. Bone Joint J 93–B(10):1411–1415.  https://doi.org/10.1302/0301-620X.93B10.27100 CrossRefGoogle Scholar
  118. 118.
    Wei Y, Bai L (2016) Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connect Tissue Res 57(4):245–261.  https://doi.org/10.1080/03008207.2016.1177036 CrossRefPubMedGoogle Scholar
  119. 119.
    Whittaker JL et al (2015) Outcomes associated with early post-traumatic osteoarthritis and other negative health consequences 3?10 years following knee joint injury in youth sport. Osteoarthr Cartil 23(7):1122–1129.  https://doi.org/10.1016/j.joca.2015.02.021 CrossRefPubMedGoogle Scholar
  120. 120.
    Wluka AE, Cicuttini FM, Spector TD (2000) Menopause, oestrogens and arthritis. Maturitas 35(3):183–199.  https://doi.org/10.1016/S0378-5122(00)00118-3 CrossRefPubMedGoogle Scholar
  121. 121.
    Wluka AE, Lombard CB, Cicuttini FM (2012) Tackling obesity in knee osteoarthritis. Nat Rev Rheumatol 9(4):225–235.  https://doi.org/10.1038/nrrheum.2012.224 CrossRefPubMedGoogle Scholar
  122. 122.
    Wright GD et al (1996) Association of two loci on chromosome 2q with nodal osteoarthritis. Ann Rheum Dis 55(5):317–319. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8660106 (Accessed: 28 June 2017)CrossRefGoogle Scholar
  123. 123.
    Xia B et al (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 95(6):495–505.  https://doi.org/10.1007/s00223-014-9917-9 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Xu L et al (2014) Induction of high temperature requirement A1, a serine protease, by TGF-beta1 in articular chondrocytes of mouse models of OA. Histol Histopathol 29(5):609–618.  https://doi.org/10.14670/HH-29.10.609 CrossRefPubMedGoogle Scholar
  125. 125.
    Yammani RR et al (2006) Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: role of the receptor for advanced glycation end products. Arthritis Rheum 54(9):2901–2911.  https://doi.org/10.1002/art.22042 CrossRefPubMedGoogle Scholar
  126. 126.
    Yoon KH, Park KH (2014) Meniscal repair. Knee Surg Relat Res 26(2):68–76.  https://doi.org/10.5792/ksrr.2014.26.2.68 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Yoshimura N et al (2012) ‘Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthr Cartil 20(11):1217–1226.  https://doi.org/10.1016/j.joca.2012.06.006 CrossRefPubMedGoogle Scholar
  128. 128.
    Yudoh K, Karasawa R (2010) Statin prevents chondrocyte aging and degeneration of articular cartilage in osteoarthritis (OA). Aging 2(12):990–998.  https://doi.org/10.18632/aging.100213 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Zhang F-J, Luo W, Lei G-H (2015) Role of HIF-1? And HIF-2? In osteoarthritis. Joint Bone Spine 82(3):144–147.  https://doi.org/10.1016/j.jbspin.2014.10.003 CrossRefPubMedGoogle Scholar
  130. 130.
    Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20201770 (Accessed: 16 July 2017)CrossRefGoogle Scholar
  131. 131.
    Zhao W et al (2016) Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF-β signaling. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 34(5):763–770.  https://doi.org/10.1002/jor.23079 CrossRefGoogle Scholar
  132. 132.
    Zhuo Q et al (2012) Metabolic syndrome meets osteoarthritis. Nature Rev Rheum 8(12):729–737.  https://doi.org/10.1038/nrrheum.2012.135 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gema Jiménez
    • 1
    • 2
    • 3
    • 4
  • Jesús Cobo-Molinos
    • 5
  • Cristina Antich
    • 1
    • 2
    • 3
  • Elena López-Ruiz
    • 1
    • 2
    • 3
    • 4
    • 6
  1. 1.Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)University of GranadaGranadaSpain
  2. 2.Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada-University of GranadaGranadaSpain
  3. 3.Department of Human Anatomy and Embryology, Faculty of MedicineUniversity of GranadaGranadaSpain
  4. 4.Excellence Research Unit “Modelling Nature” (MNat)University of GranadaGranadaSpain
  5. 5.Department of Health SciencesUniversity of JaénJaénSpain
  6. 6.Department of Health SciencesUniversity of JaénJaénSpain

Personalised recommendations