Models of Disease

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)

Abstract

Osteochondral (OC) lesions are a major cause of chronic musculoskeletal pain and functional disability, which reduces the quality of life of the patients and entails high costs to the society. Currently, there are no effective treatments, so in vitro and in vivo disease models are critically important to obtain knowledge about the causes and to develop effective treatments for OC injuries. In vitro models are essential to clarify the causes of the disease and the subsequent design of the first barrier to test potential therapeutics. On the other hand, in vivo models are anatomically more similar to humans allowing to reproduce the pattern and progression of the lesion in a controlled scene and offering the opportunity to study the symptoms and responses to new treatments. Moreover, in vivo models are the most suitable preclinical model, being a fundamental and a mandatory step to ensure the successful transfer to clinical trials. Both in vitro and in vitro models have a number of advantages and limitation, and the choice of the most appropriate model for each study depends on many factors, such as the purpose of the study, handling or the ease to obtain, and cost, among others. In this chapter, we present the main in vitro and in vivo OC disease models that have been used over the years in the study of origin, progress, and treatment approaches of OC defects.

Keywords

Osteoarthritis Osteochondral defects Disease models In vitro models In vivo models 

Notes

Acknowledgements

This work was supported by the Ministerio de Economía, Industria y Competitividad (FEDER funds, project RTC-2016-5451-1). G. J. acknowledges the Junta de Andalucía for providing a post-doctoral fellowship. Also, C. A. acknowledges the predoctoral fellowship from the Spanish Ministry of Education, Culture and Sports (BOE-A-2014-13539).

References

  1. 1.
    Adaes S et al (2014) Intra-articular injection of collagenase in the knee of rats as an alternative model to study nociception associated with osteoarthritis. Arthritis Res Ther 16(1):R10PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ahern BJ et al (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthr Cartil 17(6):705–713Google Scholar
  3. 3.
    Aigner T, McKenna L (2002) Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci 59(1):5–18PubMedGoogle Scholar
  4. 4.
    Allen KD et al (2009) Decreased physical function and increased pain sensitivity in mice deficient for type IX collagen. Arthritis Rheum 60(9):2684–2693PubMedPubMedCentralGoogle Scholar
  5. 5.
    Asahara H (2016) Current status and strategy of microRNA research for cartilage development and osteoarthritis pathogenesis. J Bone Metab 23(3):121–127PubMedPubMedCentralGoogle Scholar
  6. 6.
    Beekhuizen M et al (2011) Osteoarthritic synovial tissue inhibition of proteoglycan production in human osteoarthritic knee cartilage: establishment and characterization of a long-term cartilage-synovium coculture. Arthritis Rheum 63(7):1918–1927PubMedGoogle Scholar
  7. 7.
    Bhattacharjee M et al (2015) Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 84:107–122. Available at:  https://doi.org/10.1016/j.addr.2014.08.010 PubMedGoogle Scholar
  8. 8.
    Bian Q et al (2012) Osteoarthritis: genetic factors, animal models, mechanisms, and therapies. Front Biosci (Elite Ed) 4:74–100Google Scholar
  9. 9.
    Bijlsma JWJ, Berenbaum F, Lafeber FPJG (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377(9783):2115–2126Google Scholar
  10. 10.
    Blumbach K et al (2008) Ablation of collagen IX and COMP disrupts epiphyseal cartilage architecture. Matrix Biol: J Int So Matrix Biol 27(4):306–318Google Scholar
  11. 11.
    Bove SE et al (2003) Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthr Cartil 11(11):821–830. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14609535. Accessed 26 May 2017PubMedGoogle Scholar
  12. 12.
    Carlson CS et al (1994) Osteoarthritis in cynomolgus macaques: a primate model of naturally occurring disease. J Orthop Res: Off Publ Orthop Res Soc 12(3):331–339Google Scholar
  13. 13.
    Coleman CM, Tuan RS (2003) Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech Dev 120(7):823–836PubMedGoogle Scholar
  14. 14.
    De Croos JNA et al (2006) Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol 25(6):323–331PubMedGoogle Scholar
  15. 15.
    FDA (1999) Guidance for industry: clinical development programs for drugs, devices, and biological products intended for the treatment of osteoarthritis (OA). www.FDA.gov (July)
  16. 16.
    Fehrenbacher A et al (2003) Rapid regulation of collagen but not metalloproteinase 1, 3, 13, 14 and tissue inhibitor of metalloproteinase 1, 2, 3 expression in response to mechanical loading of cartilage explants in vitro. Arch Biochem Biophys 410(1):39–47PubMedGoogle Scholar
  17. 17.
    Finger F et al (2003) Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2. Arthritis Rheum 48(12):3395–3403PubMedGoogle Scholar
  18. 18.
    Frisbie DD et al (2008) Changes in synovial fluid and serum biomarkers with exercise and early osteoarthritis in horses. Osteoarthr Cartil 16(10):1196–1204PubMedGoogle Scholar
  19. 19.
    Frisbie DD, Cross MW, McIlwraith CW (2006) A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol: VCOT 19(3):142–146PubMedGoogle Scholar
  20. 20.
    Frisbie DD, McIlwraith CW (2000) Evaluation of gene therapy as a treatment for equine traumatic arthritis and osteoarthritis. Clin Orthop Relat Res 379 Suppl:S273–S287Google Scholar
  21. 21.
    Gabriel N et al (2010) Development of an in vitro model of feline cartilage degradation. J Feline Med Surg 12(8):614–620. Available at:  https://doi.org/10.1016/j.jfms.2010.03.007 PubMedGoogle Scholar
  22. 22.
    Garner BC et al (2011) Using animal models in osteoarthritis biomarker research. J Knee Surg 24(4):251–264. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22303754. Accessed 26 May 2017PubMedGoogle Scholar
  23. 23.
    Gerwin N et al (2010) The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the rat. Osteoarthr Cartil 18(Suppl 3):S24–S34PubMedGoogle Scholar
  24. 24.
    Gouttenoire J et al (2007) Knockdown of the intraflagellar transport protein IFT46 stimulates selective gene expression in mouse chondrocytes and affects early development in zebrafish. J Biol Chem 282(42):30960–30973PubMedGoogle Scholar
  25. 25.
    Gregory MH et al (2012) A review of translational animal models for knee osteoarthritis. Arthritis 2012:764621PubMedPubMedCentralGoogle Scholar
  26. 26.
    Groma G et al (2012) Abnormal bone quality in cartilage oligomeric matrix protein and matrilin 3 double-deficient mice caused by increased tissue inhibitor of metalloproteinases 3 deposition and delayed aggrecan degradation. Arthritis Rheum 64(8):2644–2654PubMedGoogle Scholar
  27. 27.
    Gruchenberg K et al (2015) In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model. Knee Surg Sports Traumatol Arthrosc: Off J ESSKA 23(8):2218–2229Google Scholar
  28. 28.
    Hafez A et al (2015) Col11a1 regulates bone microarchitecture during embryonic development. J Dev Biol 3(4):158–176PubMedPubMedCentralGoogle Scholar
  29. 29.
    He A et al (2017) Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Sci Rep 7:40489PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hering TM et al (2014) Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5′ splice site within Col2a1 exon 2. Matrix Biol: J Int Soc Matrix Biol 36:51–63Google Scholar
  31. 31.
    Hillen J et al (2017) Structural cartilage damage attracts circulating rheumatoid arthritis synovial fibroblasts into affected joints. Arthritis Res Ther 19(1):40PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hooijmans CR, Leenaars M, Ritskes-Hoitinga M (2010) A gold standard publication checklist to improve the quality of animal studies, to fully integrate the three Rs, and to make systematic reviews more feasible. Altern Lab Anim: ATLA 38(2):167–182PubMedGoogle Scholar
  33. 33.
    Hsueh MF, Önnerfjord P, Kraus VB (2014) Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol 39:56–66. Available at:  https://doi.org/10.1016/j.matbio.2014.08.012 PubMedGoogle Scholar
  34. 34.
    Hunter DJ, Felson DT (2006) Osteoarthritis. BMJ (Clinical research ed) 332(7542):639–642Google Scholar
  35. 35.
    Hunter DJ, Schofield D, Callander E (2014) The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol 10(7):437–441. Available at:  https://doi.org/10.1038/nrrheum.2014.44 Google Scholar
  36. 36.
    Ikeda T et al (1998) Adenovirus mediated gene delivery to the joints of Guinea pigs. J Rheumatol 25(9):1666–1673PubMedGoogle Scholar
  37. 37.
    Ilic MZ et al (2007) Distinguishing aggrecan loss from aggrecan proteolysis in ADAMTS-4 and ADAMTS-5 single and double deficient mice. J Biol Chem 282(52):37420–37428PubMedGoogle Scholar
  38. 38.
    Jaeger K et al (2008) The genetics of osteoarthritis in STR/ort mice. Osteoarthr Cartil 16(5):607–614PubMedGoogle Scholar
  39. 39.
    Jiménez G et al (2015) Activin a/BMP2 chimera AB235 drives efficient redifferentiation of long term cultured autologous chondrocytes. Sci Rep 5(1):16400. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26563344. Accessed 26 May 2017
  40. 40.
    Jimenez PA et al (1997) Spontaneous osteoarthritis in Dunkin Hartley Guinea pigs: histologic, radiologic, and biochemical changes. Lab Anim Sci 47(6):598–601PubMedGoogle Scholar
  41. 41.
    Johnson CI, Argyle DJ, Clements DN (2016) In vitro models for the study of osteoarthritis. Vet J 209:40–49Google Scholar
  42. 42.
    Kawanishi Y et al (2014) Intra-articular injection of synthetic microRNA-210 accelerates avascular meniscal healing in rat medial meniscal injured model. Arthritis Res Ther 16(6):488PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kawcak CE et al (2008) Effects of exercise vs experimental osteoarthritis on imaging outcomes. Osteoarthr Cartil 16(12):1519–1525PubMedGoogle Scholar
  44. 44.
    Kerckhofs G et al (2013) Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions. Eur Cell Mater 25:179–189. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23389752. Accessed 26 May 2017PubMedGoogle Scholar
  45. 45.
    Kim Y-I et al (2015) Cartilage development requires the function of estrogen-related receptor alpha that directly regulates sox9 expression in zebrafish. Sci Rep 5:18011PubMedPubMedCentralGoogle Scholar
  46. 46.
    Kim Y-I et al (2013) Establishment of a bone-specific col10a1:GFP transgenic zebrafish. Mol Cells 36(2):145–150PubMedPubMedCentralGoogle Scholar
  47. 47.
    Koch TG, Betts DH (2007) Stem cell therapy for joint problems using the horse as a clinically relevant animal model. Expert Opin Biol Ther 7(11):1621–1626Google Scholar
  48. 48.
    Kon E et al (2008) Tissue engineering for total meniscal substitution: animal study in sheep model. Tissue Eng A 14(6):1067–1080Google Scholar
  49. 49.
    van der Kraan PM et al (1990) Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. J Exp Pathol (Oxford) 71(1):19–31Google Scholar
  50. 50.
    van der Kraan PM (2013) Relevance of zebrafish as an OA research model. Osteoarthr Cartil 21(2):261–262PubMedGoogle Scholar
  51. 51.
    Kuyinu EL et al (2016) Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 11:19PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kyostio-Moore S et al (2011) STR/ort mice, a model for spontaneous osteoarthritis, exhibit elevated levels of both local and systemic inflammatory markers. Comp Med 61(4):346–355PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lampropoulou-Adamidou K et al (2014) Useful animal models for the research of osteoarthritis. Eur J Orthop Surg Traumatol: Orthop Traumatol 24(3):263–271Google Scholar
  54. 54.
    Lawrence RC et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part II. Arthritis Rheum 58(1):26–35. Available at:  https://doi.org/10.1002/art.23176 PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lin YY et al (2010) Applying an excessive mechanical stress alters the effect of subchondral osteoblasts on chondrocytes in a co-culture system. Eur J Oral Sci 118(2):151–158PubMedGoogle Scholar
  56. 56.
    Little CB, Zaki S (2012) What constitutes an “animal model of osteoarthritis”--the need for consensus? Osteoarthr Cartil 20(4):261–267PubMedGoogle Scholar
  57. 57.
    Liu W et al (2003) Spontaneous and experimental osteoarthritis in dog: similarities and differences in proteoglycan levels. J Orthop Res: Off Publ Orthop Res Soc 21(4):730–737Google Scholar
  58. 58.
    Madden JC et al (2012) Strategies for the optimisation of in vivo experiments in accordance with the 3Rs philosophy. Regul Toxicol Pharmacol 63(1):140–154. Available at: http://www.sciencedirect.com/science/article/pii/S0273230012000578 PubMedGoogle Scholar
  59. 59.
    Mahjoub M, Berenbaum F, Houard X (2012) Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis. Osteoporos Int 23(8 SUPPL):841–846Google Scholar
  60. 60.
    Malda J et al (2012) Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthr Cartil 20(10):1147–1151PubMedGoogle Scholar
  61. 61.
    Malfait A-M, Little CB (2015) On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther 17:225PubMedPubMedCentralGoogle Scholar
  62. 62.
    Martel-Pelletier J, Wildi LM, Pelletier J-P (2012) Future therapeutics for osteoarthritis. Bone 51(2):297–311Google Scholar
  63. 63.
    Martinez-Diaz S et al (2010) In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Am J Sports Med 38(3):509–519PubMedGoogle Scholar
  64. 64.
    McCoy AM (2015) Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol 52(5):803–818Google Scholar
  65. 65.
    McIlwraith CW, Frisbie DD, Kawcak CE (2012) The horse as a model of naturally occurring osteoarthritis. Bone Joint Res 1(11):297–309PubMedPubMedCentralGoogle Scholar
  66. 66.
    Mello MA, Tuan RS (2006) Effects of TGF-beta1 and triiodothyronine on cartilage maturation: in vitro analysis using long-term high-density micromass cultures of chick embryonic limb mesenchymal cells. J Orthop Res: Off Publ Orthop Res Soc 24(11):2095–2105Google Scholar
  67. 67.
    Mierzwa AGH et al (2017) Different doses of strontium ranelate and mechanical vibration modulate distinct responses in the articular cartilage of ovariectomized rats. Osteoarthr Cartil 25(7):1179–1188PubMedGoogle Scholar
  68. 68.
    Miller RE et al (2013) Genetically engineered mouse models reveal the importance of proteases as osteoarthritis drug targets. Curr Rheumatol Rep 15(8):350PubMedPubMedCentralGoogle Scholar
  69. 69.
    Mitchell RE et al (2013) New tools for studying osteoarthritis genetics in zebrafish. Osteoarthr Cartil 21(2):269–278PubMedPubMedCentralGoogle Scholar
  70. 70.
    Moran CJ et al (2016) The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop 3(1):1. Available at: http://www.jeo-esska.com/content/3/1/1. Accessed 26 May 2017
  71. 71.
    Moreau M et al (2014) A medicinal herb-based natural health product improves the condition of a canine natural osteoarthritis model: a randomized placebo-controlled trial. Res Vet Sci 97(3):574–581. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0034528814002483. Accessed 26 May 2017PubMedGoogle Scholar
  72. 72.
    Moreau M et al (2013) A posteriori comparison of natural and surgical destabilization models of canine osteoarthritis. Biomed Res Int 2013:180453. Available at: http://www.hindawi.com/journals/bmri/2013/180453/. Accessed 26 May 2017PubMedPubMedCentralGoogle Scholar
  73. 73.
    Morko J et al (2005) Spontaneous development of synovitis and cartilage degeneration in transgenic mice overexpressing cathepsin K. Arthritis Rheum 52(12):3713–3717PubMedGoogle Scholar
  74. 74.
    Moyer RF et al (2017) Osteoarthritis year in review 2014: mechanics – basic and clinical studies in osteoarthritis. Osteoarthr Cartil 22(12):1989–2002. Available at:  https://doi.org/10.1016/j.joca.2014.06.034 Google Scholar
  75. 75.
    Murab S et al (2013) Matrix-embedded cytokines to simulate osteoarthritis-like cartilage microenvironments. Tissue Eng A 19(15–16):1733–1753. Available at: http://online.liebertpub.com/doi/abs/10.1089/ten.tea.2012.0385 Google Scholar
  76. 76.
    Muraoka T et al (2007) Role of subchondral bone in osteoarthritis development: a comparative study of two strains of Guinea pigs with and without spontaneously occurring osteoarthritis. Arthritis Rheum 56(10):3366–3374PubMedGoogle Scholar
  77. 77.
    Novakofski KD, Torre CJ, Fortier LA (2012) Interleukin-1??, −6, and −8 decrease Cdc42 activity resulting in loss of articular chondrocyte phenotype. J Orthop Res 30(2):246–251PubMedGoogle Scholar
  78. 78.
    Olive J et al (2009) Imaging and histological features of central subchondral osteophytes in racehorses with metacarpophalangeal joint osteoarthritis. Equine Vet J 41(9):859–864PubMedGoogle Scholar
  79. 79.
    Osawa A et al (2013) The use of blood vessel-derived stem cells for meniscal regeneration and repair. Med Sci Sports Exerc 45(5):813–823PubMedPubMedCentralGoogle Scholar
  80. 80.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233PubMedPubMedCentralGoogle Scholar
  81. 81.
    Pape D et al (2010) Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):448–462PubMedGoogle Scholar
  82. 82.
    Pecchi E et al (2012) A potential role of chondroitin sulfate on bone in osteoarthritis: inhibition of prostaglandin E 2 and matrix metalloproteinases synthesis in interleukin-1β- stimulated osteoblasts. Osteoarthr Cartil 20(2):127–135. Available at:  https://doi.org/10.1016/j.joca.2011.12.002 PubMedGoogle Scholar
  83. 83.
    Percie du Sert N (2012) Maximising the output of osteoarthritis research: the ARRIVE guidelines. Osteoarthr Cartil 20(4):253–255PubMedGoogle Scholar
  84. 84.
    Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater (Deerfield Beach, Fla) 27(7):1143–1169Google Scholar
  85. 85.
    Pritzker KP et al (1989) Rhesus macaques as an experimental model for degenerative arthritis. P R Health Sci J 8(1):99–102PubMedGoogle Scholar
  86. 86.
    Pritzker KPH et al (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil 14(1):13–29PubMedGoogle Scholar
  87. 87.
    Redman SN, Oldfield SF, Archer CW (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9:23–32PubMedGoogle Scholar
  88. 88.
    Reynard LN, Loughlin J (2013) Insights from human genetic studies into the pathways involved in osteoarthritis. Nat Rev Rheumatol 9(10):573–583. Available at: http://www.nature.com/doifinder/10.1038/nrrheum.2013.121 PubMedGoogle Scholar
  89. 89.
    Rogerson FM et al (2008) Evidence of a novel aggrecan-degrading activity in cartilage: studies of mice deficient in both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 58(6):1664–1673PubMedGoogle Scholar
  90. 90.
    Sabatini M et al (2005) Effect of inhibition of matrix metalloproteinases on cartilage loss in vitro and in a Guinea pig model of osteoarthritis. Arthritis Rheum 52(1):171–180PubMedGoogle Scholar
  91. 91.
    Sahebjam S, Khokha R, Mort JS (2007) Increased collagen and aggrecan degradation with age in the joints of Timp3(−/−) mice. Arthritis Rheum 56(3):905–909PubMedGoogle Scholar
  92. 92.
    Sanchez C et al (2016) Chondrocyte secretome: a source of novel insights and exploratory biomarkers of osteoarthritis. Osteoarthr Cartil. Available at:  https://doi.org/10.1016/j.joca.2017.02.797
  93. 93.
    Sanchez C et al (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 58(2):442–455Google Scholar
  94. 94.
    Sanchez C et al (2005) Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthr Cartil 13(11):988–997PubMedGoogle Scholar
  95. 95.
    Santangelo KS, Bertone AL (2011) Effective reduction of the interleukin-1beta transcript in osteoarthritis-prone Guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis. Osteoarthr Cartil 19(12):1449–1457PubMedGoogle Scholar
  96. 96.
    Santo VE et al (2013) Controlled release strategies for bone, cartilage, and osteochondral engineering–part II: challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng Part B Rev 19(4):327–352. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23249320. Accessed 26 May 2017Google Scholar
  97. 97.
    Sato M et al (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain Guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 14(1):R31PubMedPubMedCentralGoogle Scholar
  98. 98.
    Sendzik J, Lode H, Stahlmann R (2009) Quinolone-induced arthropathy: an update focusing on new mechanistic and clinical data. Int J Antimicrob Agents 33(3):194–200. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0924857908003531. Accessed 26 May 2017PubMedGoogle Scholar
  99. 99.
    Da Silva MA et al (2009) Cellular and epigenetic features of a young healthy and a young osteoarthritic cartilage compared with aged control and OA cartilage. J Orthop Res 27(5):593–601PubMedGoogle Scholar
  100. 100.
    Simon D et al (2015) The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop 2015:928301PubMedPubMedCentralGoogle Scholar
  101. 101.
    Smith RL et al (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13(6):824–831. Available at: http://doi.wiley.com/10.1002/jor.1100130604. Accessed 19 May 2017PubMedGoogle Scholar
  102. 102.
    Stoop R et al (1999) Type II collagen degradation in spontaneous osteoarthritis in C57Bl/6 and BALB/c mice. Arthritis Rheum 42(11):2381–2389PubMedGoogle Scholar
  103. 103.
    Swieszkowski W et al (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24(5):489–495. Available at: http://www.sciencedirect.com/science/article/pii/S1389034407000834 PubMedGoogle Scholar
  104. 104.
    Taniguchi S et al (2012) Long-term oral administration of glucosamine or chondroitin sulfate reduces destruction of cartilage and up-regulation of MMP-3 mRNA in a model of spontaneous osteoarthritis in Hartley Guinea pigs. J Orthop Res: Off Publ Orthop Res Soc 30(5):673–678Google Scholar
  105. 105.
    Teeple E et al (2013) Animal models of osteoarthritis: challenges of model selection and analysis. AAPS J 15(2):438–446PubMedPubMedCentralGoogle Scholar
  106. 106.
    Thysen S, Luyten FP, Lories RJU (2015) Targets, models and challenges in osteoarthritis research. Dis Model Mech 8(1):17–30. Available at: http://dmm.biologists.org/cgi/doi/10.1242/dmm.016881 PubMedPubMedCentralGoogle Scholar
  107. 107.
    Tortelli F, Cancedda R (2009) Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro. Eur Cell Mater 17:1–14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19579210. Accessed 26 May 2017PubMedGoogle Scholar
  108. 108.
    Tremoleda JL et al (2011) Imaging technologies for preclinical models of bone and joint disorders. EJNMMI Res 1(1):11PubMedPubMedCentralGoogle Scholar
  109. 109.
    Trumble TN et al (2008) Joint dependent concentrations of bone alkaline phosphatase in serum and synovial fluids of horses with osteochondral injury: an analytical and clinical validation. Osteoarthr Cartil 16(7):779–786PubMedGoogle Scholar
  110. 110.
    Tufan AC et al (2002) AP-1 transcription factor complex is a target of signals from both WnT-7a and N-cadherin-dependent cell-cell adhesion complex during the regulation of limb mesenchymal chondrogenesis. Exp Cell Res 273(2):197–203PubMedGoogle Scholar
  111. 111.
    Vazquez M et al (2014) A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Front Endocrinol 5(DEC):1–19Google Scholar
  112. 112.
    Wang W-G et al (2003) In vitro chondrogenesis of human bone marrow-derived mesenchymal progenitor cells in monolayer culture: activation by transfection with TGF-beta2. Tissue Cell 35(1):69–77PubMedGoogle Scholar
  113. 113.
    Watanabe H, Yamada Y (2002) Chondrodysplasia of gene knockout mice for aggrecan and link protein. Glycoconj J 19(4–5):269–273PubMedGoogle Scholar
  114. 114.
    Wei L, Svensson O, Hjerpe A (1997) Correlation of morphologic and biochemical changes in the natural history of spontaneous osteoarthrosis in Guinea pigs. Arthritis Rheum 40(11):2075–2083PubMedGoogle Scholar
  115. 115.
    Wendler A, Wehling M (2010) The translatability of animal models for clinical development: biomarkers and disease models. Curr Opin Pharmacol 10(5):601–606PubMedGoogle Scholar
  116. 116.
    Whitehouse MR et al (2017) Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl Med 6(4):1237–1248PubMedGoogle Scholar
  117. 117.
    Yamamoto K et al (2005) Morphological studies on the ageing and osteoarthritis of the articular cartilage in C57 black mice. J Orthop Surg (Hong Kong) 13(1):8–18Google Scholar
  118. 118.
    Yan L-P et al (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25449920. Accessed 26 May 2017PubMedGoogle Scholar
  119. 119.
    Yang B et al (2014) Effect of microRNA-145 on IL-1β-induced cartilage degradation in human chondrocytes. FEBS Lett 588(14):2344–2352. Available at:  https://doi.org/10.1016/j.febslet.2014.05.033 PubMedGoogle Scholar
  120. 120.
    Young RD et al (2002) Type II collagen deposition in cruciate ligament precedes osteoarthritis in the Guinea pig knee. Osteoarthr Cartil 10(5):420–428PubMedGoogle Scholar
  121. 121.
    Yu XM et al (2015) MicroRNAs’ involvement in osteoarthritis and the prospects for treatments. Evid Based Complement Alternat Med 2015:236179Google Scholar
  122. 122.
    Zamli Z et al (2013) Increased chondrocyte apoptosis is associated with progression of osteoarthritis in spontaneous Guinea pig models of the disease. Int J Mol Sci 14(9):17729–17743PubMedPubMedCentralGoogle Scholar
  123. 123.
    Zellner J et al (2013) Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater 101(7):1133–1142PubMedGoogle Scholar
  124. 124.
    Zhao W et al (2016) Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF-beta signaling. J Orthop Res: Off Publ Orthop Res Soc 34(5):763–770Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gema Jiménez
    • 1
    • 2
    • 3
    • 4
  • Elena López-Ruiz
    • 1
    • 2
    • 4
    • 5
  • Cristina Antich
    • 1
    • 2
    • 3
    • 4
  • Carlos Chocarro-Wrona
    • 2
    • 4
  • Juan Antonio Marchal
    • 1
    • 2
    • 3
    • 4
  1. 1.Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)University of GranadaGranadaSpain
  2. 2.Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada-University of GranadaGranadaSpain
  3. 3.Department of Human Anatomy and Embryology, Faculty of MedicineUniversity of GranadaGranadaSpain
  4. 4.Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
  5. 5.Department of Health ScienceUniversity of JaénJaénSpain

Personalised recommendations