Skip to main content

Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting

  • Chapter
  • First Online:
Osteochondral Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1058))

Abstract

Over the recent years, the advent of 3D bioprinting technology has marked a milestone in osteochondral tissue engineering (TE) research. Nowadays, the traditional used techniques for osteochondral regeneration remain to be inefficient since they cannot mimic the complexity of joint anatomy and tissue heterogeneity of articular cartilage. These limitations seem to be solved with the use of 3D bioprinting which can reproduce the anisotropic extracellular matrix (ECM) and heterogeneity of this tissue. In this chapter, we present the most commonly used 3D bioprinting approaches and then discuss the main criteria that biomaterials must meet to be used as suitable bioinks, in terms of mechanical and biological properties. Finally, we highlight some of the challenges that this technology must overcome related to osteochondral bioprinting before its clinical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  2. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  3. Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6(1):1601118. https://doi.org/10.1002/adhm.201601118

    Article  CAS  Google Scholar 

  4. Arslan-Yildiz A, Assal RE, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8(1):014103. https://doi.org/10.1088/1758-5090/8/1/014103

    Article  CAS  PubMed  Google Scholar 

  5. O’Connell G, Garcia J, Amir J (2017) 3D bioprinting: new directions in articular cartilage tissue engineering. ACS Biomater Sci Eng 3:2657. https://doi.org/10.1021/acsbiomaterials.6b00587

    Article  CAS  PubMed  Google Scholar 

  6. Muller M, Becher J, Schnabelrauch M, Zenobi-Wong M (2015) Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7(3):035006. https://doi.org/10.1088/1758-5090/7/3/035006

    Article  CAS  PubMed  Google Scholar 

  7. Ozbolat IT (2017) Bioprinting of osteochondral tissues: a perspective on current gaps and future trends. Int J Bioprint. 3(2). doi:https://doi.org/10.18063/ijb.2017.02.007

  8. Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S (2017) Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromolecules 18(1):1–26. https://doi.org/10.1021/acs.biomac.6b01619

    Article  CAS  PubMed  Google Scholar 

  9. Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ (2017) 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater 6. https://doi.org/10.1002/adhm.201700298

  10. Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, Alblas J, Dhert WJ (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44. https://doi.org/10.1089/ten.TEC.2011.0060

    Article  CAS  PubMed  Google Scholar 

  11. Bartnikowski M, Akkineni AR, Gelinsky M, Woodruff MA, Klein TJ (2016) A hydrogel model incorporating 3D-plotted hydroxyapatite for osteochondral tissue engineering. Materials (Basel) 9(4). https://doi.org/10.3390/ma9040285

    Article  PubMed Central  Google Scholar 

  12. Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, Thakur A, Mohtaram NK, Bayati A, Dolatshahi-Pirouz A, Nikkhah M, Willerth SM, Akbari M (2017) Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater 29(19). https://doi.org/10.1002/adma.201606061

    Article  Google Scholar 

  13. Muller M, Ozturk E, Arlov O, Gatenholm P, Zenobi-Wong M (2017) Alginate sulfate-Nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng 45(1):210–223. https://doi.org/10.1007/s10439-016-1704-5

    Article  PubMed  Google Scholar 

  14. Yang SS, Choi WH, Song BR, Jin H, Lee SJ, Lee SH, Lee J, Kim YJ, Park SR, Park S-H, Min B-H (2015) Fabrication of an osteochondral graft with using a solid freeform fabrication system. Tiss Eng Regen Med 12(4):239–248. https://doi.org/10.1007/s13770-015-0001-y

    Article  CAS  Google Scholar 

  15. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319. https://doi.org/10.1038/nbt.3413

    Article  CAS  PubMed  Google Scholar 

  16. Ahadian S, Yamada S, Ramon-Azcon J, Estili M, Liang X, Nakajima K, Shiku H, Khademhosseini A, Matsue T (2016) Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomater 31:134–143. https://doi.org/10.1016/j.actbio.2015.11.047

    Article  CAS  PubMed  Google Scholar 

  17. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002

    Article  CAS  PubMed  Google Scholar 

  18. Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5. https://doi.org/10.3389/fbioe.2017.00023

  19. Donderwinkel I, van Hest JCM, Cameron NR (2017) Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 8(31):4451–4471. https://doi.org/10.1039/c7py00826k

    Article  CAS  Google Scholar 

  20. Klotz BJ, Gawlitta D, Rosenberg AJ, Malda J, Melchels FP (2016) Gelatin-Methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34(5):394–407. https://doi.org/10.1016/j.tibtech.2016.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16(8):2675–2685. https://doi.org/10.1089/ten.TEA.2009.0798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daly AC, Critchley SE, Rencsok EM, Kelly DJ (2016) A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 8(4):045002. https://doi.org/10.1088/1758-5090/8/4/045002

    Article  CAS  PubMed  Google Scholar 

  23. Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, Zavan B, Bressan E (2016) Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 34(5):740–753. https://doi.org/10.1016/j.biotechadv.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  24. Zhou X, Nowicki M, Cui H, Zhu W, Fang X, Miao S, Lee S-J, Keidar M, Zhang LG (2017) 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon 116:615–624. https://doi.org/10.1016/j.carbon.2017.02.049

    Article  CAS  Google Scholar 

  25. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 113(12):3179–3184. https://doi.org/10.1073/pnas.1521342113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003. https://doi.org/10.1038/nmat2013

    Article  CAS  PubMed  Google Scholar 

  27. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601. https://doi.org/10.1098/rsif.2006.0124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boushell MK, Hung CT, Hunziker EB, Strauss EJ, Lu HH (2016) Current strategies for integrative cartilage repair. Connect Tissue Res 58(5):393–406. https://doi.org/10.1080/03008207.2016.1231180

    Article  CAS  PubMed  Google Scholar 

  29. Ahmed TAE, Hincke MT (2009) Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev 16(3):305–329. https://doi.org/10.1089/ten.teb.2009.0590

    Article  CAS  Google Scholar 

  30. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  31. Yu Y, Moncal KK, Li J, Peng W, Rivero I, Martin JA, Ozbolat IT (2016) Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep 6:28714. https://doi.org/10.1038/srep28714. https://www.nature.com/articles/srep28714#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ozbolat IT (2015) Scaffold-based or scaffold-free bioprinting: competing or complementing approaches? J Nanotechnol Eng Med 6(2):024701–024706. https://doi.org/10.1115/1.4030414

    Article  CAS  Google Scholar 

  33. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076

    Article  CAS  PubMed  Google Scholar 

  34. Pereira RF, Bártolo PJ (2015) 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci 132(48):n/a-n/a. doi:https://doi.org/10.1002/app.42458

    Article  Google Scholar 

  35. Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo RO (2016) Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83:363–382. https://doi.org/10.1016/j.biomaterials.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  36. Ahn G, Min KH, Kim C, Lee JS, Kang D, Won JY, Cho DW, Kim JY, Jin S, Yun WS, Shim JH (2017) Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules. Sci Rep 7(1):8624. https://doi.org/10.1038/s41598-017-09201-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Duchi S, Onofrillo C, O'Connell CD, Blanchard R, Augustine C, Quigley AF, Kapsa RMI, Pivonka P, Wallace G, Di Bella C, Choong PFM (2017) Handheld co-axial bioprinting: application to in situ surgical cartilage repair. Sci Rep 7(1):5837. https://doi.org/10.1038/s41598-017-05699-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. O'Connell CD, Di Bella C, Thompson F, Augustine C, Beirne S, Cornock R, Richards CJ, Chung J, Gambhir S, Yue Z, Bourke J, Zhang B, Taylor A, Quigley A, Kapsa R, Choong P, Wallace GG (2016) Development of the biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 8(1):015019. https://doi.org/10.1088/1758-5090/8/1/015019

    Article  PubMed  Google Scholar 

  39. Ahlfeld T, Cidonio G, Kilian D, Duin S, Akkineni AR, Dawson JI, Yang S, Lode A, Oreffo ROC, Gelinsky M (2017) Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication 9(3):034103. https://doi.org/10.1088/1758-5090/aa7e96

    Article  CAS  PubMed  Google Scholar 

  40. Costantini M, Idaszek J, Szoke K, Jaroszewicz J, Dentini M, Barbetta A, Brinchmann JE, Swieszkowski W (2016) 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation. Biofabrication 8(3):035002. https://doi.org/10.1088/1758-5090/8/3/035002

    Article  CAS  PubMed  Google Scholar 

  41. Chawla S, Kumar A, Admane P, Bandyopadhyay A, Ghosh S (2017) Elucidating role of silk-gelatin bioink to recapitulate articular cartilage differentiation in 3D bioprinted constructs. Bioprinting 7:1–13. https://doi.org/10.1016/j.bprint.2017.05.001

    Article  Google Scholar 

  42. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17(10):385–389. https://doi.org/10.1016/S0167-7799(99)01355-4

    Article  CAS  PubMed  Google Scholar 

  43. Odde DJ, Renn MJ (2000) Laser-guided direct writing of living cells. Biotechnol Bioeng 67(3):312–318. https://doi.org/10.1002/(sici)1097-0290(20000205)67:3<312::aid-bit7>3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  44. Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB (2010) Laser-based direct-write techniques for cell printing. Biofabrication 2(3):032001. https://doi.org/10.1088/1758-5082/2/3/032001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kingsley DM, Dias AD, Chrisey DB, Corr DT (2013) Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads. Biofabrication 5(4):045006. https://doi.org/10.1088/1758-5082/5/4/045006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, Bernemann I, Glasmacher B, Chichkov B (2011) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17(1):79–87. https://doi.org/10.1089/ten.TEC.2010.0359

    Article  PubMed  Google Scholar 

  47. Hendriks J, Willem Visser C, Henke S, Leijten J, Saris DB, Sun C, Lohse D, Karperien M (2015) Optimizing cell viability in droplet-based cell deposition. Sci Rep 5:11304. https://doi.org/10.1038/srep11304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Graham AD, Olof SN, Burke MJ, Armstrong JPK, Mikhailova EA, Nicholson JG, Box SJ, Szele FG, Perriman AW, Bayley H (2017) High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep 7(1):7004. https://doi.org/10.1038/s41598-017-06358-x

    Article  PubMed  PubMed Central  Google Scholar 

  49. O'Brien CM, Holmes B, Faucett S, Zhang LG (2015) Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B Rev 21(1):103–114. https://doi.org/10.1089/ten.teb.2014.0168

    Article  CAS  PubMed  Google Scholar 

  50. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4):245–260. https://doi.org/10.1002/term.24

    Article  CAS  PubMed  Google Scholar 

  51. Chen SS, Falcovitz YH, Schneiderman R, Maroudas A, Sah RL (2001) Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthr Cartil 9(6):561–569. https://doi.org/10.1053/joca.2001.0424

    Article  CAS  Google Scholar 

  52. Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20(11):1055–1061. https://doi.org/10.1016/0021-9290(87)90023-6

    Article  CAS  PubMed  Google Scholar 

  53. Adepu S, Dhiman N, Laha A, Sharma CS, Ramakrishna S, Khandelwal M (2017) Three-dimensional bioprinting for bone tissue regeneration. Cur Opin Biomed Eng? 2(supplement C):22–28. doi:https://doi.org/10.1016/j.cobme.2017.03.005

    Article  Google Scholar 

  54. Mota C, Puppi D, Chiellini F, Chiellini E (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9(3):174–190. https://doi.org/10.1002/term.1635

    Article  CAS  PubMed  Google Scholar 

  55. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  CAS  Google Scholar 

  56. Huang Q, JCHG, Hutmacher DW, Lee EH (2004) In Vivo Mesenchymal Cell Recruitment by a Scaffold Loaded with Transforming Growth Factor β1 and the Potential for in Situ Chondrogenesis. Tiss Eng 8(3):469–482. doi:https://doi.org/10.1089/107632702760184727

    Article  CAS  PubMed  Google Scholar 

  57. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185. https://doi.org/10.1016/S0142-9612(01)00232-0

    Article  CAS  PubMed  Google Scholar 

  58. Woodfield TBF, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149–4161. https://doi.org/10.1016/j.biomaterials.2003.10.056

    Article  CAS  PubMed  Google Scholar 

  59. Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, Hutmacher DW, Melchels FPW, Klein TJ, Malda J (2013) Gelatin-Methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13(5):551–561. https://doi.org/10.1002/mabi.201200471

    Article  CAS  PubMed  Google Scholar 

  60. Cui H, Zhu W, Holmes B, Zhang LG (2016) Biologically inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv Sci 3(8):1600058. doi:10.1002/advs.201600058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Domingos M, Intranuovo F, Gloria A, Gristina R, Ambrosio L, Bártolo PJ, Favia P (2013) Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomater 9(4):5997–6005. https://doi.org/10.1016/j.actbio.2012.12.031

    Article  CAS  PubMed  Google Scholar 

  62. Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS, Lee JH, Kim WD, Kwon IK, Park SA (2016) Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomaterialia 40(supplement C):182–191. doi:https://doi.org/10.1016/j.actbio.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  63. Costa PF, Puga AM, Díaz-Gomez L, Concheiro A, Busch DH, Alvarez-Lorenzo C (2015) Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. Int J Pharm 496(2):541–550. https://doi.org/10.1016/j.ijpharm.2015.10.055

    Article  CAS  PubMed  Google Scholar 

  64. Brown TD, Dalton PD, Hutmacher DW (2011) Direct writing by way of melt electrospinning. Adv Mater 23(47):5651–5657. https://doi.org/10.1002/adma.201103482

    Article  CAS  PubMed  Google Scholar 

  65. Bas O, De-Juan-Pardo EM, Chhaya MP, Wunner FM, Jeon JE, Klein TJ, Hutmacher DW (2015) Enhancing structural integrity of hydrogels by using highly organised melt electrospun fibre constructs. Eur Polym J 72(supplement C):451–463. doi:https://doi.org/10.1016/j.eurpolymj.2015.07.034

    Article  CAS  Google Scholar 

  66. Visser J, Melchels FPW, Jeon JE, van Bussel EM, Kimpton LS, Byrne HM, Dhert WJA, Dalton PD, Hutmacher DW, Malda J (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. 6:6933. https://doi.org/10.1038/ncomms7933. https://www.nature.com/articles/ncomms7933#supplementary-information

  67. Gernot Hochleitner TJ, Brown TD, Hahn K, Moseke C, Jakob F, Dalton PD, Groll J (2015) Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 7(3)

    Article  PubMed  Google Scholar 

  68. Brown TD, Edin F, Detta N, Skelton AD, Hutmacher DW, Dalton PD (2014) Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Mater Sci Eng C 45(supplement C):698-708. doi:https://doi.org/10.1016/j.msec.2014.07.034

    Article  CAS  Google Scholar 

  69. Onur B, Elena MD-J-P, Christoph M, Davide DA, Jeremy GB, Laura JB, Wellard RM, Stefan K, Ernst R, Carsten W, Travis JK, Isabelle C, Dietmar WH (2017) Biofabricated soft network composites for cartilage tissue engineering. Biofabrication 9(2):025014

    Article  Google Scholar 

  70. Bas O, D’Angella D, Baldwin JG, Castro NJ, Wunner FM, Saidy NT, Kollmannsberger S, Reali A, Rank E, De-Juan-Pardo EM, Hutmacher DW (2017) An integrated design, material, and fabrication platform for engineering biomechanically and biologically functional soft tissues. ACS Appl Mater Interfaces 9(35):29430–29437. https://doi.org/10.1021/acsami.7b08617

    Article  CAS  PubMed  Google Scholar 

  71. Deckard CR (1997) Apparatus for producing parts by selective sintering. Google Patents.

    Google Scholar 

  72. Schmid M, Amado A, Wegener K (2015) Polymer powders for selective laser sintering (SLS). AIP Conf Proc 1664(1):160009. https://doi.org/10.1063/1.4918516

    Article  CAS  Google Scholar 

  73. Almoatazbellah Y, Scott JH, Paul DD (2017) Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication 9(1):012002

    Article  Google Scholar 

  74. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827. https://doi.org/10.1016/j.biomaterials.2004.11.057

    Article  CAS  PubMed  Google Scholar 

  75. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505. https://doi.org/10.1016/j.actbio.2010.06.024

    Article  CAS  PubMed  Google Scholar 

  76. Kanczler JM, Mirmalek-Sani S-H, Hanley NA, Ivanov AL, Barry JJA, Upton C, Shakesheff KM, Howdle SM, Antonov EN, Bagratashvili VN, Popov VK, Oreffo ROC (2009) Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater 5(6):2063–2071. https://doi.org/10.1016/j.actbio.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  77. Cijun S, Zhongzheng M, Haibo L, Yi N, Huanlong H, Shuping P (2013) Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication 5(1):015014

    Article  Google Scholar 

  78. Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S (2013) Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine 8:4197–4213. https://doi.org/10.2147/ijn.s50685

    Article  PubMed  PubMed Central  Google Scholar 

  79. XiaoHui S, Wei L, PingHui S, QingYong S, QingSong W, YuSheng S, Kai L, WenGuang L (2015) Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. Int J Adv Manuf Technol 81(1):15–25. https://doi.org/10.1007/s00170-015-7135-x

    Article  Google Scholar 

  80. Kuznetsova D, Prodanets N, Rodimova S, Antonov E, Meleshina A, Timashev P, Zagaynova E (2017) Study of the involvement of allogeneic MSCs in bone formation using the model of transgenic mice. Cell Adhes Migr 11(3):233–244. https://doi.org/10.1080/19336918.2016.1202386

    Article  CAS  Google Scholar 

  81. Savalani MM, Hao L, Dickens PM, Zhang Y, Tanner KE, Harris RA (2012) The effects and interactions of fabrication parameters on the properties of selective laser sintered hydroxyapatite polyamide composite biomaterials. Rapid Prototyp J 18(1):16–27. https://doi.org/10.1108/13552541211193467

    Article  Google Scholar 

  82. Shuai C, Feng P, Gao C, Shuai X, Xiao T, Peng S (2015) Graphene oxide reinforced poly(vinyl alcohol): nanocomposite scaffolds for tissue engineering applications. RSC Adv 5(32):25416–25423. https://doi.org/10.1039/c4ra16702c

    Article  CAS  Google Scholar 

  83. Chong W, Qilong Z, Min W (2017) Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Biofabrication 9(2):025031

    Article  Google Scholar 

  84. Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY (2008) Selective laser sintering of porous tissue engineering scaffolds from poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med 19(7):2535–2540. https://doi.org/10.1007/s10856-007-3089-3

    Article  CAS  PubMed  Google Scholar 

  85. Du Y, Liu H, Shuang J, Wang J, Ma J, Zhang S (2015) Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids and Surf B Biointerf 135(supplement C):81–89. doi:https://doi.org/10.1016/j.colsurfb.2015.06.074

    Article  CAS  PubMed  Google Scholar 

  86. Di Bella C, Fosang A, Donati DM, Wallace GG, Choong PFM (2015) 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines. Front Surg 2:39. https://doi.org/10.3389/fsurg.2015.00039

    Article  PubMed  PubMed Central  Google Scholar 

  87. Du Y, Liu H, Yang Q, Wang S, Wang J, Ma J, Noh I, Mikos AG, Zhang S (2017) Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 137 (Supplement C):37–48. doi:https://doi.org/10.1016/j.biomaterials.2017.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cai Q, Wan Y, Bei J, Wang S (2003) Synthesis and characterization of biodegradable polylactide-grafted dextran and its application as compatilizer. Biomaterials 24(20):3555–3562. https://doi.org/10.1016/S0142-9612(03)00199-6

    Article  CAS  PubMed  Google Scholar 

  89. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P (2005) Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976. https://doi.org/10.1021/bm0500805

    Article  CAS  PubMed  Google Scholar 

  90. Sun H, Mei L, Song C, Cui X, Wang P (2006) The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 27(9):1735–1740. https://doi.org/10.1016/j.biomaterials.2005.09.019

    Article  CAS  PubMed  Google Scholar 

  91. Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60(2):243–262. https://doi.org/10.1016/j.addr.2007.08.027

    Article  CAS  PubMed  Google Scholar 

  92. Schuurman W, Khristov V, Pot MW, PRv W, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2):021001

    Article  CAS  PubMed  Google Scholar 

  93. Shim J-H, Huh J-B, Park JY, Jeon Y-C, Kang SS, Kim JY, Rhie J-W, Cho D-W (2012) Fabrication of blended Polycaprolactone/poly (lactic-co-glycolic acid)/β-Tricalcium phosphate thin membrane using solid freeform fabrication Technology for Guided Bone Regeneration. Tissue Eng A 19(3–4):317–328. https://doi.org/10.1089/ten.tea.2011.0730

    Article  CAS  Google Scholar 

  94. Kundu J, Shim J-H, Jang J, Kim S-W, Cho D-W (2015) An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297. https://doi.org/10.1002/term.1682

    Article  CAS  PubMed  Google Scholar 

  95. Izadifar Z, Chang T, Kulyk W, Chen X, Eames BF (2015) Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering. Tissue Eng Part C Methods 22(3):173–188. https://doi.org/10.1089/ten.tec.2015.0307

    Article  CAS  Google Scholar 

  96. Margaret AN, Nathan JC, Michael WP, Lijie Grace Z (2016) 3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology 27(41):414001

    Article  Google Scholar 

  97. Guo R, Lu S, Page JM, Merkel AR, Basu S, Sterling JA, Guelcher SA (2015) Fabrication of 3D scaffolds with precisely controlled substrate modulus and pore size by templated-fused deposition modeling to direct osteogenic differentiation. Adv Healthc Mater 4(12):1826–1832. https://doi.org/10.1002/adhm.201500099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dong L, Wang S-J, Zhao X-R, Zhu Y-F, Yu J-K (2017) 3D- printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep 7(1):13412. https://doi.org/10.1038/s41598-017-13838-7

    Article  PubMed  PubMed Central  Google Scholar 

  99. Boere KWM, Visser J, Seyednejad H, Rahimian S, Gawlitta D, van Steenbergen MJ, Dhert WJA, Hennink WE, Vermonden T, Malda J (2014) Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomater 10(6):2602–2611. https://doi.org/10.1016/j.actbio.2014.02.041

    Article  CAS  PubMed  Google Scholar 

  100. Levato R, Webb WR, Otto IA, Mensinga A, Zhang Y, van Rijen M, van Weeren R, Khan IM, Malda J (2017) The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater 61:41–53. https://doi.org/10.1016/j.actbio.2017.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim JE, Kim SH, Jung Y (2016) Current status of three-dimensional printing inks for soft tissue regeneration. Tiss Eng Regen Med 13(6):636–646. https://doi.org/10.1007/s13770-016-0125-8

    Article  CAS  Google Scholar 

  102. Chuah YJ, Peck Y, Lau JE, Hee HT, Wang DA (2017) Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci 5(4):613–631. https://doi.org/10.1039/c6bm00863a

    Article  CAS  PubMed  Google Scholar 

  103. Zhai X, Ma Y, Hou C, Gao F, Zhang Y, Ruan C, Pan H, Lu WW, Liu W (2017) 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater Sci Eng 3(6):1109–1118. https://doi.org/10.1021/acsbiomaterials.7b00224

    Article  CAS  PubMed  Google Scholar 

  104. Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A (2013) Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromolecules 14(4):1085–1092. https://doi.org/10.1021/bm3019856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ju Young P, Jong-Cheol C, Jin-Hyung S, Jung-Seob L, Hyoungjun P, Sung Won K, Junsang D, Dong-Woo C (2014) A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 6(3):035004

    Article  Google Scholar 

  106. Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ (2014) A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 10(1):214–223. https://doi.org/10.1016/j.actbio.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  107. Shaoquan B, He M, Junhui S, Cai H, Sun Y, Liang J, Fan Y, Zhang X (2016) The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture, vol 140. doi:https://doi.org/10.1016/j.colsurfb.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  108. Riccardo L, Jetze V, Josep AP, Elisabeth E, Jos M, Miguel AM-T (2014) Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6(3):035020

    Article  Google Scholar 

  109. Chameettachal S, Midha S, Ghosh S (2016) Regulation of Chondrogenesis and hypertrophy in silk fibroin-gelatin-based 3D bioprinted constructs. ACS Biomater Sci Eng 2(9):1450–1463. https://doi.org/10.1021/acsbiomaterials.6b00152

    Article  CAS  PubMed  Google Scholar 

  110. Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ (2014) Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels. J Biomed Mater Res A 102(8):2544–2553. https://doi.org/10.1002/jbm.a.34924

    Article  CAS  PubMed  Google Scholar 

  111. Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26(1):85–124. https://doi.org/10.1002/adma.201303233

    Article  CAS  PubMed  Google Scholar 

  112. Hynes WF, Doty NJ, Zarembinski TI, Schwartz MP, Toepke MW, Murphy WL, Atzet SK, Clark R, Melendez JA, Cady NC (2014) Micropatterning of 3D microenvironments for living biosensor applications. Biosensors (Basel) 4(1):28–44. https://doi.org/10.3390/bios4010028

    Article  CAS  Google Scholar 

  113. Pereira RF, Bartolo PJ (2015) 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci 132(48). https://doi.org/10.1002/app.42458

    Article  Google Scholar 

  114. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21(32–33):3307–3329. https://doi.org/10.1002/adma.200802106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10(5):1836–1846. https://doi.org/10.1016/j.actbio.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  116. Kim BS, Jang J, Chae S, Gao G, Kong JS, Ahn M, Cho DW (2016) Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Biofabrication 8(3):035013. https://doi.org/10.1088/1758-5090/8/3/035013

    Article  CAS  PubMed  Google Scholar 

  117. Axpe E, Oyen ML (2016) Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci 17(12). https://doi.org/10.3390/ijms17121976

    Article  PubMed Central  Google Scholar 

  118. Nguyen D, Hagg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M, Lindahl A, Gatenholm P, Enejder A, Simonsson S (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a Nanocellulose/alginate bioink. Sci Rep 7(1):658. https://doi.org/10.1038/s41598-017-00690-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with Nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496. https://doi.org/10.1021/acs.biomac.5b00188

    Article  CAS  PubMed  Google Scholar 

  120. Bakarich SE, Gorkin R, in het Panhuis M, Spinks GM (2014) Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces 6 (18):15998–16006. doi:https://doi.org/10.1021/am503878d

    Article  CAS  Google Scholar 

  121. Wang Y, Wu S, Kuss MA, Streubel PN, Duan B (2017) Effects of hydroxyapatite and hypoxia on Chondrogenesis and hypertrophy in 3D bioprinted ADMSC laden constructs. ACS Biomater Sci Eng 3(5):826–835. https://doi.org/10.1021/acsbiomaterials.7b00101

    Article  CAS  PubMed  Google Scholar 

  122. Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta biomaterialia 57 (supplement C):1-25. https://doi.org/10.1016/j.actbio.2017.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cui X, Breitenkamp K, Lotz M, D'Lima D (2012) Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng 109(9):2357–2368. https://doi.org/10.1002/bit.24488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kesti M, Eberhardt C, Pagliccia G, Kenkel D, Grande D, Boss A, Zenobi-Wong M (2015) Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater 25(48):7406–7417. https://doi.org/10.1002/adfm.201503423

    Article  Google Scholar 

  125. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376(9739):440–448. https://doi.org/10.1016/S0140-6736(10)60668-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hung K-C, Tseng C-S, Dai L-G, Hsu S-H (2016) Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 83(Supplement C):156–168. doi:https://doi.org/10.1016/j.biomaterials.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  127. Gao G, Zhang XF, Hubbell K, Cui X (2017) NR2F2 regulates chondrogenesis of human mesenchymal stem cells in bioprinted cartilage. Biotechnol Bioeng 114(1):208–216. https://doi.org/10.1002/bit.26042

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Mora-Boza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mora-Boza, A., Lopez-Donaire, M.L. (2018). Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-319-76711-6_10

Download citation

Publish with us

Policies and ethics