Skip to main content

Phytotoxicity of Rare Earth Nanomaterials

  • Chapter
  • First Online:
Phytotoxicity of Nanoparticles
  • 777 Accesses

Abstract

Rare earth nanomaterials (RENMs) are widely used in various applications, leading to potential release of these materials into the environment. The study of interactions between RENMs and plants are of particular importance. In this review paper, we summarize recent advances on this topic, including three sections: (1) toxicological effects of RENMs on plants, (2) uptake and translation, and (3) transformation. It is expected that this review will provide necessary background information to further advance the knowledge on the phytotoxicity of RENMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrios AC, Rico CM, Trujillo-Reyes J et al (2015) Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ 563–564:956–964

    PubMed  Google Scholar 

  • Birbaum K, Brogioli R, Schellenberg M et al (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44(22):8718–8723

    Article  CAS  PubMed  Google Scholar 

  • Cui D, Zhang P, Ma Y et al (2014) Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environ Sci Nano 1(5):459–465

    Article  CAS  Google Scholar 

  • Du W, Gardeatorresdey JL, Ji R et al (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49(19):11884–11893

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Priester JH, Van De Werfhorst LC et al (2014) Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities. Environ Sci Technol 48(22):13489–13496

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels plant and human lymphocytes. Chemosphere 81(10):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Gorte RJ (2010) Ceria in catalysis: from automotive applications to the water-gas shift reaction. AIChE J 56(5):1126–1135

    CAS  Google Scholar 

  • Guigues S, Bravin MN, Garnier C et al (2014) Isolated cell walls exhibit cation binding properties distinct from those of plant roots. Plant Soil 381(1–2):367–379

    Article  CAS  Google Scholar 

  • Hernandez-viezcas JA, Castillo-michel H, Andrews JC et al (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7(2):1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Peralta-Videa JR, Rico C et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Wang L, Sun Y et al (2015) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563:904–911

    PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108(3):1028–1033

    Article  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Layet C, Auffan M, Santaella C et al (2017) Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environ Sci Technol 51:9756–9764

    Article  CAS  PubMed  Google Scholar 

  • López-Moreno M, de la Rosa G, Herna ndez-Viezcas J et al (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lópezmoreno ML, Rosa GDL, Castillomichel H et al (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Article  CAS  Google Scholar 

  • Lv J, Shen Y, Peng L et al (2010) Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chem Commun 46(32):5909–5911

    Article  CAS  Google Scholar 

  • Ma Y, Kuang L, Xiao H et al (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, He X, Zhang P et al (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5(4):743–753

    Article  CAS  PubMed  Google Scholar 

  • Ma PA, Xiao H, Li X et al (2013) Rational design of multifunctional upconversion nanocrystals/polymer nanocomposites for cisplatin (IV) delivery and biomedical imaging. Adv Mater 25(35):4898–4905

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhang P, Zhang Z et al (2015a) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology 9(2):262–270

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhang P, Zhang Z et al (2015b) Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ Sci Technol 49(17):10667–10674

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Liu H, Guo H et al (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3(6):1369–1379

    Article  CAS  Google Scholar 

  • Mattiello A, Filippi A, Pošćić F et al (2015) Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 6(e57189):1043

    PubMed  PubMed Central  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224

    Article  CAS  PubMed  Google Scholar 

  • Pagano L, Servin AD, De La Torre-Roche R et al (2016) Molecular response of crop plants to engineered nanomaterials. Environ Sci Technol 50(13):7198–7207

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Sun Y, Liu Q et al (2012) Upconversion nanoparticles dramatically promote plant growth without toxicity. Nano Res 5(11):770–782

    Article  CAS  Google Scholar 

  • Rico CM, Hong J, Morales et al (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642

    Article  CAS  PubMed  Google Scholar 

  • Schwabe F, Schulin R, Rupper P et al (2014) Dissolution and transformation of cerium oxide nanoparticles in plant growth media. J Nanopart Res 16(10):1–11

    Article  CAS  Google Scholar 

  • Schwabe F, Tanner S, Schulin R et al (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics 7(3):466–477

    Article  CAS  PubMed  Google Scholar 

  • Sokolov S, Kondratenko EV, Pohl MM et al (2013) Effect of calcination conditions on time on-stream performance of Ni/La2 O3 –ZrO2 in low-temperature dry reforming of methane. Int J Hydrogen Energy 38(36):16121–16132

    Article  CAS  Google Scholar 

  • Spielman-Sun E, Lombi E, Donner E et al (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51(13):7361–7368

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Kurepa J, Smalle JANA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Ma Y, Zhang P et al (2017) Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. Environ Pollut 224:392–399

    Article  CAS  PubMed  Google Scholar 

  • Yin W, Zhou L, Ma Y et al (2015) Phytotoxicity, translocation, and biotransformation of NaYF4 upconversion nanoparticles in a soybean plant. Small 11(36):4774–4784

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, He X, Zhang H et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3(8):816–822

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2012a) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z (2012b) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6(11):9943–9950

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hou F, Tan Y (2012c) CeO2 nanoplates with a hexagonal structure and their catalytic applications in highly selective hydrogenation of substituted nitroaromatics. Chem Commun 48(18):2391–2393

    Article  CAS  Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2015a) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Ebbs SD, Musante C et al (2015b) Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). J Agric Food Chem 63(2):382–390

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Liu S et al (2017a) Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut 220:1400–1408

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Xie C, Ma Y et al (2017b) Shape-dependent transformation and translocation of ceria nanoparticles in cucumber plants. Environ Sci Technol Lett 4(9):380–385

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J Hazard Mater 225:131–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant No. 11575208, 11375009, 11405183, 11675190, 11275215, and 11275218) and the Ministry of Science and Technology of China (Grant No. 2013CB932703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, S., Ma, Y., Yang, F., Chu, J., Zhang, Z. (2018). Phytotoxicity of Rare Earth Nanomaterials. In: Faisal, M., Saquib, Q., Alatar, A., Al-Khedhairy, A. (eds) Phytotoxicity of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-76708-6_4

Download citation

Publish with us

Policies and ethics