Skip to main content

Lantana aculeata L.-Mediated Zinc Oxide Nanoparticle-Induced DNA Damage in Sesamum indicum and Their Cytotoxic Activity Against SiHa Cell Line

  • Chapter
  • First Online:
Phytotoxicity of Nanoparticles

Abstract

Zinc oxide nanoparticles were synthesized by biological method using aqueous extract of Lantana aculeata leaf and characterized by UV-visible spectroscopy, XRD, FTIR, FESEM, HRTEM and EDX analysis. The synthesized particles were highly stable and spherical, and particle size was in the range of 12–25 nm. The cytotoxicity activity of Lantana aculeata-mediated zinc oxide nanoparticles was evaluated by MTT assay against SiHa cervical cancer cell lines and confirmed that zinc oxide nanoparticles have cytotoxicity activity. The genotoxicity of ZnO nanoparticles was evaluated using comet assay and DNA laddering technique. ZnO nanoparticles in Sesamum indicum is yet to be confirmed in the comet assay and DNA laddering experiments. We detected increased level of DNA damage in concentration at 2000 mg L−1 treatment dose of ZnO nanoparticles in Sesamum indicum. The study thus confirms the toxicity potential of ZnO nanoparticles in both plant and human cancer cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ankamwar B, Damle C, Ahmad A et al (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5(10):1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Atha DH, Wang H, Petersen EJ et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Babu KS, Narayanan V (2013) Hydrothermal synthesis of hydrated zinc oxide nanoparticles and its characterization. Chem Sci Trans 1:S33–S36

    Google Scholar 

  • Chakraborty R, Mukherjee AK, Mukherjee A (2009) Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test. Environ Monit Assess 153:351–357

    Article  CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R et al (2006) Synthesis of gold nano triangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  PubMed  Google Scholar 

  • Choudhury S, Panda SK (2004) Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr) broth under lead (Pb) and arsenic (As) phytotoxicity. Curr Sci 87:342–348

    CAS  Google Scholar 

  • Dakhlaoui A, Jendoubi M, Smiri LS et al (2009) Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology. J Cryst Growth 311(16):3989–3996

    Article  CAS  Google Scholar 

  • Day MD, Wiley CJ, Playford J et al (2003) Lantana: current management, status and future prospects. Aust Centre Int Agric Res 5:1–20

    Google Scholar 

  • Dobhal PK, Kohli RK, Batish DR (2011) Impact of Lantana camara L. invasion on riparian vegetation of Nayar region in Garhwal Himalayas (Uttarakhand, India). J Ecol Nat Environ 3(1):11–22

    Google Scholar 

  • Elumalai EK, Prasad TNVKV, Venkata K et al (2010) Green synthesis of silver nanoparticles using Euphorbia hirta L. and their antifungal activities. Arch Appl Sci Res 2(6):76–81

    CAS  Google Scholar 

  • Elzey S, Grassian VH (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environmental. J Nanopart Res 12:1945–1958

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E et al (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  Google Scholar 

  • Harter R, Naidu R (2001) An Assessment of environment and solution parameter impact on trace metal sorption by soil. Soil Sci Soc Am J 3:597–612

    Article  Google Scholar 

  • Hiremath J, Sundaram B (2005) The fire-Lantana cycle hypothesis in Indian forests. Conserv Soc 3:26–42

    Google Scholar 

  • Huang MH, Mao S, Feick H et al (2001) Room temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Ismail S (2012) Phytoremediation: a green technology. Iran J Plant Physiol 3(1):567–576

    Google Scholar 

  • Ismail NHHAB, Bakar MA (2004) Synthesis and characterization of silver nanoparticles in nature rubber. Mater Chem Phys 104:276–283

    Google Scholar 

  • Isobe H, Tanaka T, Maeda R et al (2006) Preparation, purification, characterization and cytotoxicity assessment of water soluble, transition metal free carbon nanotube aggregates. Angew Chem Int Ed 45(40):6676–6680

    Article  CAS  Google Scholar 

  • Jiang XF, Zhu ZH, Zhou J (1998) Application of comet assay in plant protoplast apoptosis detection. Acta Bot Sinica 40:928–932

    CAS  Google Scholar 

  • Kahru A, Dubourguier H (2010) From ecotoxicology to nano ecotoxicology. Toxicology 296:105–119

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC et al (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Qureshi MI, Alam T et al (2007) Protocol for isolation of genomic DNA from dry and fresh roots of medicinal plants suitable for RAPD and restriction digestion. Afr J Biotechnol 6(3):175–178

    CAS  Google Scholar 

  • Krishnan D, Pradeep T (2009) Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline coated Au nanoparticle seed. J Cryst Growth 311(15):3889–3897

    Article  CAS  Google Scholar 

  • Kumarasamyraja D, Jaganathan NS (2013) Antimicrobial activity of silver nanoparticles prepared from the leaf extract of Lantana camara. Int Res J Pharm 4(5):203–207

    Article  CAS  Google Scholar 

  • Kumarasamyraja D, Jeganathan NS, Manavalan R (2012) Pharmacological Review of Lantana camara L. Int J Pharm Ind Res 2(1):1–5

    Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Larson DL, Anderson PJ, Newton W (2001) Alien plant invasion in mixed grass prairie: effects of vegetation type and anthropogenic disturbance. Ecol Appl 11:128–141

    Article  Google Scholar 

  • Masciangioli T, Zhang WX (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37:102–108

    Article  Google Scholar 

  • Mohanpuria PR, Yadav SK (2009) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Monalisa M, Patra HK (2013) An in vivo study on toxicology alternation in Sesamum indicum L. under hexavalent chromium stress. Int J Sci Res 4(5):2319–7064

    Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2014) Physiological effects of nanoparticle ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan S, Kuppusamy A (2013) Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J Nanobiotechnol 11:39

    Article  CAS  Google Scholar 

  • Narendhran S, Rajiv P, Sivaraj R (2016) Toxicity of ZnO nanoparticles on germinating Sesamum indicum (Co-1) and their antibacterial activity. Bull Mater Sci 39(2):415–421

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Papis E, Gornati R, Prati M et al (2007) Gene expression in nanotoxicology research: analysis by differential display in BALB3T3 fibroblast exposed to cobalt particles and ions. Toxicol Lett 170(3):185–192

    Article  CAS  PubMed  Google Scholar 

  • Powell M, Griffin M, Tai S (2008) Bottom-up risk regulation? How nanotechnology risk knowledge gaps challenge federal and state environmental agencies. Environ Mgmt 42(3):426–443

    Article  Google Scholar 

  • Purakayastha TJ, Bhatnagar RK (1997) Vermicompost: a promising source of plant nutrients. Indian Farming 46:35–37

    Google Scholar 

  • Raghubanshi AS, Tripathi A (2009) Effect of disturbance, habitat fragmentation and alien invasive plants on floral diversity in dry tropical forests of Vindhyan highland: a review. Trop Ecol 50(1):57–69

    Google Scholar 

  • Rahman M, Tan, PJ, Faruq G et al (2013) Use of Amaranth (Amaranthus paniculatus) and Indian Mustard (Brassica juncea) for Phytoextraction of lead and copper from contaminated soil. Int J Agric Biol 15:903–908

    Google Scholar 

  • Reeves JF, Davies SJ, Dodd NJ et al (2007) Hydroxyl radicals (_OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640(1):113–122

    PubMed  Google Scholar 

  • Roco MC (2003) Broader societal issues of nanotechnology. J Nanopart Res 5:181–189

    Article  Google Scholar 

  • Roco MC, Williams S, Alivisatos P (1999) Nanotechnology research directions: IWGN workshop report. Int Tech Res Inst, World Tech. (WTEC) Division R

    Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566

    Article  CAS  Google Scholar 

  • Sankar R, Karthik A, Prabu A et al (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B Biointerfaces 108:80–84

    Article  CAS  PubMed  Google Scholar 

  • SCENIHR (2006) The appropriateness of existing methodologies to assess the potential risk associated with engineering and adventitious product of nanotechnologies, Europe

    Google Scholar 

  • Selvi DA, Gunaseeli R (2004) Turning waste into wealth using vermicomposting. National seminar on “Rural Biotechnology for Sustainable Development”. The Gandhigram Rural Institute, Gandhigram, 19th and 20th February, 23–24

    Google Scholar 

  • Shankar SS, Ahmad A, Pasricjaa R et al (2003) Bioreduction of chloroaurate ion by geranium leaves and its endophytic fungus yield gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shankar S, Rai A, Ahmad A et al (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    Article  CAS  PubMed  Google Scholar 

  • Sharma GP, Raghubanshi AS (2010) How Lantana invades dry deciduous forest: a case study from Vindhyan highlands, India. Trop Ecol 51(2S):305–316

    Google Scholar 

  • Sharma OP, Sharma S, Pattabhi V et al (2007) A review of the hepatotoxic plant Lantana camara. J Sci Ind Res 37:313–352

    CAS  Google Scholar 

  • Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout: respiratory toxicity, organ pathologies and other physiological effects. Aquat Toxicol 82(2):94–109

    Article  CAS  PubMed  Google Scholar 

  • Song JYJ, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44(10):1133–1138

    Article  CAS  Google Scholar 

  • Srivastava SK (2007) Green supply chain management: a state-of-the-art literature review. Int J Manage Rev 9(1):53–80

    Article  Google Scholar 

  • Thirumurugan A, Tomy NA, Kumar HP et al (2011) Biological synthesis of silver nanoparticles by Lantana camara leaf extracts. Int J Nanomater Bios 1(2):22–24

    Google Scholar 

  • Vanaja M, Gnanajobitha G, Paulkumar K et al (2013) Phytosynthesis of silver nanoparticles by ‘Cissus quadrangularis’, influence of physiochemical factors. J Nanostruct Chem 3(1):17–24

    Article  Google Scholar 

  • Vanathi P, Rajiv P, Narendhran S, Rajeshwari S et al (2014) Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: a green chemistry approach. Mater Lett 134:13–15

    Article  CAS  Google Scholar 

  • Vidhya KM, Saranya TR, Sreelakshmy KR et al (2013) Pharmaceutical solid dispersion technology: a promising tool to enhance oral bioavailability. Int Res J Pharm App Sci 3(5):214–218

    Google Scholar 

  • Warheit DB (2008) How meaningful are the result of nanotoxicity studies in the absence of adequate material characterization. Toxicol Sci 101(2):183–185

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Prasad V, Kathe AA et al (2006) Functional finishing in cotton fabric using zinc oxide nanoparticles. Bull Mater Sci 29(6):641–645

    Article  CAS  Google Scholar 

  • Yang SJ, Park CR (2008) Facile preparation of monodisperse ZnO quantum dots with high quantity photoluminescence characteristics. Nanotechnology 19(3):609–613

    Google Scholar 

  • Zhang M, Liu X, O'Neill M (2002) Spectral discrimination of Phytophthora infestans infection on tomatoes based on principal component and cluster analyses. Int J Remote Sens 23(6):1095–1107

    Article  Google Scholar 

  • Zhang H, Jiang Y, He Z et al (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162(9):977–984

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I thank the management of Sri Krishna Arts and Science College for providing necessary facilities to carry out the research work and management of Karpagam Academy of Higher Education.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadasivam, N., Periakaruppan, R., Sivaraj, R. (2018). Lantana aculeata L.-Mediated Zinc Oxide Nanoparticle-Induced DNA Damage in Sesamum indicum and Their Cytotoxic Activity Against SiHa Cell Line. In: Faisal, M., Saquib, Q., Alatar, A., Al-Khedhairy, A. (eds) Phytotoxicity of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-76708-6_15

Download citation

Publish with us

Policies and ethics