Skip to main content

Alumina Nanoparticles and Plants: Environmental Transformation, Bioaccumulation, and Phytotoxicity

  • Chapter
  • First Online:
Phytotoxicity of Nanoparticles

Abstract

Aluminum oxide (alumina, Al2O3) nanoparticles (NPs) are one of the most abundantly manufactured metal oxides on a nanoscale. Nanoparticles are attractive for industry because of their exceptional properties; however, they simultaneously pose a threat for the environment. The below chapter discusses possible alumina nanoparticle transformations in water and soil, bioaccumulation by plants of aluminum originating from nanoparticles, and the main aspects of Al2O3 NP phytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amde M, Liu J, Tan Z et al (2017) Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environ Pollut 230:250–267

    Article  CAS  PubMed  Google Scholar 

  • Amist N, Singh NB, Yadav K et al (2017) Comparative studies of Al3+ ions and Al2O3 nanoparticles on growth and metabolism of cabbage seedlings. J Biotechnol 254:1–8

    Article  CAS  PubMed  Google Scholar 

  • Asztemborska M, Steborowski R, Kowalska J et al (2015) Accumulation of aluminium by plants exposed to nano- and microsized particles of Al2O3. Int J Environ Res 9(1):109–116

    CAS  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB et al (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7(5):e34783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bystrzejewska-Piotrowska G, Asztemborska M et al (2012) Influence of earthworms on extractability of metals from soils contaminated with Al2O3, TiO2, Zn, and ZnO nanoparticles and microparticles of Al2O3. Pol J Environ Stud 21(2):313–319

    Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V et al (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27

    Article  CAS  Google Scholar 

  • Doshi R, Braida W, Christodoulatos C et al (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:96–303

    Article  CAS  Google Scholar 

  • Future Markets Inc. (2013) The global market for metal oxide nanoparticles to 2020, Technology report No 75

    Google Scholar 

  • Ghosh S, Mashayekhi H, Pan B et al (2008) Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir 24(21):12385–12391

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Fan X, Li X et al (2017) Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environ Pollut 228:517–527

    Article  CAS  PubMed  Google Scholar 

  • Juhel G, Batisse E, Hugues Q et al (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336

    Article  CAS  PubMed  Google Scholar 

  • Keller A, McFerran S, Lazareva A et al (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1–17

    Article  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Rahman T, George J, Shipley HJ (2013) Transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration. Sci Total Environ 463–464:565–571

    Article  CAS  PubMed  Google Scholar 

  • Rajeshwari A, Kavitha S, Alex SA et al (2015) Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environ Sci Pollut Res Int 22(14):11057–11066

    Article  CAS  PubMed  Google Scholar 

  • Riahi-Madvar A, Rezaee F, Jalali V (2012) Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran J Plant Physiol 3(1):595–603

    Google Scholar 

  • Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    Article  CAS  Google Scholar 

  • Schultz C, Powell K, Crossley A et al (2015) Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. Ecotoxicology 24:239–261

    Article  CAS  PubMed  Google Scholar 

  • Vardar F, Ismailoglu I, Inan D et al (2011) Determination of stress responses induced by aluminum in maize (Zea mays). Acta Biol Hung 62:156–170

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yanik F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226:296

    Article  CAS  Google Scholar 

  • Yanik F, Ayturk O, Vardar F (2017) Programmed cell death evidence in wheat (Triticum aestivum L.) roots induced by aluminum oxide (Al2O3) nanoparticles. Caryologia 70(2):112–119

    Article  Google Scholar 

  • Yoon D, Woo D, Kim JH et al (2011) Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium. J Nanopart Res 13:2543–2551

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Asztemborska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asztemborska, M. (2018). Alumina Nanoparticles and Plants: Environmental Transformation, Bioaccumulation, and Phytotoxicity. In: Faisal, M., Saquib, Q., Alatar, A., Al-Khedhairy, A. (eds) Phytotoxicity of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-76708-6_14

Download citation

Publish with us

Policies and ethics