Skip to main content

Phytotoxicity of Nanoscale Zerovalent Iron (nZVI) in Remediation Strategies

  • Chapter
  • First Online:
Phytotoxicity of Nanoparticles

Abstract

In recent years the use of nanoscale zerovalent iron (nZVI) for environmental remediation purposes has received considerable attention. This chapter presents an overview about the state-of-the-art technology on different types of nZVI particles, their reactivity, applications, and impact on plants. The use of nZVI for the treatment of organic pollutants can lead to their total degradation, whereas for the case of metal(loid) pollution, the efficacy of the strategy is measured by the reduction of the available metal(loid) or its immobilization. The published studies about the use of nZVI on polluted soils did not find negative effects; on the contrary, the use of these nanoparticles led to a decrease of the soil toxicity due to the immobilization and/or degradation of the pollutants. The phytotoxicity of nZVI strongly depends on the nZVI type, dose, plant species, time of the exposure, and medium of application. In addition, other compounds that are added to the nanoparticles to improve their effectiveness can constitute a new source of pollution to the medium that should be controlled. Taking into account that nanoremediation is a promising strategy with potential application in contaminated sites, it is necessary to perform studies on contaminated soils with different plant species and different types and doses of nZVI analyzing the effect on the growth of the plants and at cellular scale. Monitoring studies at long term are also relevant due to the scarce data on the stability of the nanoremediation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arancibia-Miranda N, Baltazar SE, García A et al (2016) Nanoscale zero valent supported by Zeolite and Montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater 301:371–380

    Article  PubMed  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. Rev World J Microbiol Biotechnol 32:180

    Article  CAS  Google Scholar 

  • Bardos P, Bone B, Černík M et al (2015) Nanoremediation and international environmental restoration markets. Remediation J 25:83–94

    Article  Google Scholar 

  • Berge ND, Ramsburg CA (2009) Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environ Sci Technol 43:5060–5066

    Article  PubMed  CAS  Google Scholar 

  • Bezbaruah AN, Thompson JM, Chisholm BJ (2009) Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. J Environ Sci Health B 44:518–524

    Article  PubMed  CAS  Google Scholar 

  • Bitsch R, Matz P, Kvapil P et al (2017) NanoRem bulletin: NanoRem pilot site – Solvay, Switzerland: nanoscale zero-valent iron remediation of chlorinated solvents. https://clu-in.org/download/newsltrs/tins/tins131.pdf. Accessed 01 Dec 2017

  • Capaldi Arruda SC, Diniz Silva AL, Moretto Galazzi R et al (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  CAS  Google Scholar 

  • Chen SS, Hsu HD, Li CW (2004) A new method to produce nanoscale iron for nitrate removal. J Nanopart Res 6:639–647

    Article  CAS  Google Scholar 

  • Chen Z, Jin X, Chen Z et al (2011) Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J Colloid Interface Sci 363:601–607

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Cheng Y, Chen Z et al (2012) Kaolin-supported nanoscale zero-valent iron for removing cationic dye–crystal violet in aqueous solution. J Nanopart Res 14:899

    Article  CAS  Google Scholar 

  • Chen H, Cao Y, Wei E et al (2016) Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water. Chemosphere 146:32–39

    Article  PubMed  CAS  Google Scholar 

  • Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43:3717–3726

    Article  PubMed  CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospect for an emerging water treatment. J Hazard Mater 211–212:112–125

    Article  PubMed  CAS  Google Scholar 

  • Crane RA, Pullin H, Macfarlane J et al (2015) Field application of iron and iron-nickel nanoparticles for the ex situ remediation of a uranium-bearing mine water effluent. J Environ Eng 141:65–72

    Article  CAS  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S et al (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73

    Article  PubMed  CAS  Google Scholar 

  • Diao M, Yao M (2009) Use of zerovalent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Wang X, Huang F et al (2012) Toxicity of Fe0 nanoparticles on the denitrifying bacteria-Alcaligenes eutrophus. Adv Mat Res 343–344:889–894

    Google Scholar 

  • Dong J, Wen C, Liu D et al (2015) Study on degradation of nitrobenzene in groundwater using emulsified nano-zero-valent iron. J Nanopart Res 17:31

    Article  CAS  Google Scholar 

  • Dong H, Deng J, Xie Y et al (2017) Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J Hazard Mater 332:79–86

    Article  PubMed  CAS  Google Scholar 

  • Elliott DW, Lien HL, Zhang W (2009) Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng 135:317–324

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  PubMed  CAS  Google Scholar 

  • El-Temsah YS, Oughton DH, Joner EJ (2013) Effects of nano-sized zero-valent iron on DDT degradation and residual toxicity in soil: a column experiment. Plant Soil 368:189–200

    Article  CAS  Google Scholar 

  • El-Temsah YS, Sevcu A, Bobcikova K et al (2016) DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144:2221–2228

    Article  PubMed  CAS  Google Scholar 

  • Ericson B, Caravanos J, Chatham-Stephens K et al (2013) Approaches to systematic assessment of environmental exposures posed at hazardous waste sites in the developing world: the toxic sites identification program. Environ Monit Assess 185:1755

    Article  PubMed  CAS  Google Scholar 

  • Esumi K (2002) Adsolubilization of organic pollutants. In: Somasudaran P (ed) Encyclopedia of surface and colloid science, vol 1. Taylor and Francis, Boca Raton

    Google Scholar 

  • Fan W, Cheng Y, Yu S et al (2015) Preparation of wrapped nZVI particles and their application for the degradation of trichloroethylene (TCE) in aqueous solution. J Water Reuse Desalin 5:335–343

    Article  CAS  Google Scholar 

  • Fang Z, Chen J, Qiu X et al (2011) Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268:60–67

    Article  CAS  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Gerlach R, Cunningham AB, Caccavo F (2000) Dissimilatory iron-reducing bacteria can influence the reduction of carbon tetrachloride by iron metal. Environ Sci Technol 34:2461–2464

    Article  CAS  Google Scholar 

  • Ghosh I, Mukherjee A, Mukherjee A (2017) In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis 32:371–387

    Article  PubMed  CAS  Google Scholar 

  • Gil-Díaz M, Alonso J, Rodríguez-Valdés E et al (2014a) Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. J Environ Sci Health A 49:1361–1369

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Pérez-Sanz A, Vicente MA et al (2014b) Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties. Clean Soil Air Water 42:1776–1784

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Ortiz LT, Costa G et al (2014c) Immobilization and leaching of Pb and Zn in an acidic soil treated with zerovalent iron nanoparticles (nZVI): physicochemical and toxicological analysis of leachates. Water Air Soil Pollut 225:1990

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Diez-Pascual S, González A et al (2016a) A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere 149:137–145

    Article  PubMed  CAS  Google Scholar 

  • Gil-Díaz M, González A, Alonso J et al (2016b) Evaluation of the stability of a nanoremediation strategy using barley plants. J Environ Manage 165:150–158

    Article  PubMed  CAS  Google Scholar 

  • Gil-Díaz M, Alonso J, Rodríguez-Valdés E et al (2017a) Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Sci Total Environ 584–585:1324–1332

    Article  PubMed  CAS  Google Scholar 

  • Gil-Díaz M, Pinilla P, Alonso J et al (2017b) Viability of a nanoremediation process in single or multi-metal(loid)contaminated soils. J Hazard Mater 321:812–819

    Article  PubMed  CAS  Google Scholar 

  • Granqvist C, Buhrmann R, Wyns J et al (1976) Far-infrared absorption in ultrafine Al particles. Phys Rev Lett 37:625–629

    Article  CAS  Google Scholar 

  • Grieger KD, Fjordbøge A, Hartmann NB et al (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165–183

    Article  PubMed  CAS  Google Scholar 

  • Hanay O, Türk H (2013) Comprehensive evaluation of adsorption and degradation of tetracycline and oxytetracycline by nanoscale zero-valent iron. Desalin Water Treat 53:1–9

    Google Scholar 

  • Hara SO, Krug T, Quinn J et al (2006) Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediat J 16:35–56

    Article  Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  PubMed  CAS  Google Scholar 

  • Hoag GE, Collins JB, Holcomb JL et al (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677

    Article  CAS  Google Scholar 

  • Hunt WH (2004) Nanomaterials: nomenclature, novelty, and necessity. JOM 56:13–18

    Article  Google Scholar 

  • Jamei MR, Khosravi MR, Anvaripour B (2014) A novel ultrasound assisted method in synthesis of NZVI particles. Ultrason Sonochem 21:226–233

    Article  PubMed  CAS  Google Scholar 

  • Jarosova B, Filip J, Hilscherova K et al (2015) Can zero-valent iron nanoparticles remove waterborne estrogens? J Environ Manage 150:387–392

    Article  PubMed  CAS  Google Scholar 

  • Jørgenson KD, Lee PF, Kanavillil N (2013) Ecological relationships of wild rice, Zizania spp. 11. Electron microscopy study of iron plaques on the roots of northern wild rice (Zizania palustris). Botany 91:189–201

    Article  CAS  Google Scholar 

  • Kalaiarasi R, Jayallakshmi N, Venkatachalam P (2010) Phytosynthesis of nanoparticles and its applications. Plant Cell Biotechnol Mol Biol 11:1–16

    CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Kharisov BI, Dias HVR, Kharissova OV et al (2012) Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv 2:9325–9358

    Article  CAS  Google Scholar 

  • Kim HJ, Phenrat T, Tilton RD et al (2009) Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol 43:3824–3830

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Park HJ, Lee C et al (2010) Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Appl Environ Microbiol 76:7668–7670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SA, Kamala-Kannan S, Lee KJ et al (2013) Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem Eng J 217:54–60

    Article  CAS  Google Scholar 

  • Kim JH, Lee Y, Kim EJ et al (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Oh Y, Yoon H et al (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113–1119

    Article  PubMed  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Klimkova S, Cernik M, Lacinova L et al (2011) Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Kotov YA (2009) The electrical explosion of wire: a method for the synthesis of weakly aggregated nanopowders. Nanotechnol Russ 4:415–424

    Article  Google Scholar 

  • Kuiken T (2010) Cleaning up contaminated waste sites: is nanotechnology the answer? Nano Today 5:6–8

    Article  CAS  Google Scholar 

  • Kvapil P, Černík M, Lacinová L et al (2010) Field scale application, case studies from the EU (CZR). https://clu-in.org/conf/tio/nano-iron/prez/3%20KVAPIL_CLAIRE_4ppt. Accessed 01 Dec 2017

  • Laszlo T, Szabo M (2017) NanoRem bulletin: NanoRem pilot site – Balassagyarmat, Hungary: in situ groundwater remediation using Carbo-Iron® nanoparticles. https://clu-in.org/download/newsltrs/tins/tins131pdf. Accessed 01 Dec 2017

  • Lebedev SV, Korotkova AM, Osipova EA (2014) Influence of Fe0 nanoparticles, magnetite Fe3O4 nanoparticles, and iron (II) sulfate (FeSO4) solutions on the content of photosynthetic pigments in Triticum vulgare. Russ J Plant Physiol 61:564–569

    Article  CAS  Google Scholar 

  • Lefevre E, Bossa N, Wiesner MR et al (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ 565:889–901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei C, Sun Y, Tsang DCW et al (2018) Environmental transformations and ecological effects of iron-based nanoparticles. Environ Pollut 232:10–30

    Article  PubMed  CAS  Google Scholar 

  • Lemming G, Friis-Hansen P, Bjerg PL (2010) Risk-based economic decision analysis of remediation options at a PCE-contaminated site. J Environ Manage 91:1169–1182

    Article  PubMed  Google Scholar 

  • Li X, Zhang W (2007) Sequestration of metal cations with zerovalent iron nanoparticles–a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946

    Article  CAS  Google Scholar 

  • Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mat Sci 31:11–22

    Article  CAS  Google Scholar 

  • Li XQ, Brown DG, Zhang WX (2007) Stabilization of biosolids with nanoscale zero-valent iron (nZVI). J Nanopart Res 9:233–243

    Article  CAS  Google Scholar 

  • Li S, Yan W, Zhang W (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618–1626

    Article  CAS  Google Scholar 

  • Li Z, Greden K, Alvarez PJJ et al (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44:3462–3467

    Article  PubMed  CAS  Google Scholar 

  • Li S, Wan W, Yan W et al (2014) Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ Sci: Process Impacts 16:524–533

    CAS  Google Scholar 

  • Li X, Yang Y, Gao B et al (2015) Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS One 10(4):e0122884. https://doi.org/10.1371/journal.pone.0122884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Zhao Y, Xi B et al (2017) Decolorization of methyl orange by a new clay-supported nanoscale zero-valent iron: synergetic effect, efficiency optimization and mechanism. J Environ Sci (China) 52:8–17

    Article  Google Scholar 

  • Libralato G, Costa Devoti A, Zanella M et al (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Safe 123:81–88

    Article  CAS  Google Scholar 

  • Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid Surface A 191:97–105

    Article  CAS  Google Scholar 

  • Liu YQ, Majetich SA, Tilton RD et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  PubMed  CAS  Google Scholar 

  • Liu WJ, Qian TT, Jiang H (2014) Bimetallic Fe nanoparticles: recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem Eng J 236:448–463

    Article  CAS  Google Scholar 

  • Liu M, Wang Y, Chen L et al (2015) Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl Mater Interfaces 7:7961–7969

    Article  PubMed  CAS  Google Scholar 

  • Lobo MC, Pérez-Sanz A, Martínez-Iñigo MJ et al (2009) Influence of coupled electrokinetic-phytoremediation on soil remediation. In: Reddy KR, Cameselle C (eds) Electrochemical remediation technologies for polluted soils, sediments and groundwater. Wiley, Hoboken, pp 417–437

    Chapter  Google Scholar 

  • Lv X, Xue X, Jiang G et al (2014) Nanoscale zero-zalent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J Colloid Interface Sci 417:51–59

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Geisler-Lee J, Deng Y et al (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    Article  CAS  PubMed  Google Scholar 

  • Machado S, Pinto SL, Grosso JP et al (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445–446:1–8

    Article  PubMed  CAS  Google Scholar 

  • Madhavi V, Prasad TNVKV, Reddy BR et al (2014) Appl Nanosci 4:477–484

    Article  CAS  Google Scholar 

  • Marsalek M, Jancula D, Marsalkova E et al (2012) Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46:2316–2323

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Fernández D, Vítková M, Michálková Z et al (2017) Engineered nanomaterials for phytoremediation of metal/metalloid-contaminated soils: implications for plant physiology. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 5. Springer, Cham

    Google Scholar 

  • Mu Y, Jia F, Ai Z et al (2017) Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environ Sci Nano 4:27–45

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2010) Nano zero valent iron – THE solution for water and soil remediation? Report of the ObservatoryNANO. www.observatorynano.eu. Accessed 01 Dec 2017

  • Mueller NC, Braun J, Bruns J et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558

    Article  CAS  Google Scholar 

  • O’Carroll D, Sleep B, Krol M et al (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  CAS  Google Scholar 

  • Otaegi N, Cagigal E, Braun J et al (2016) Testing on emerging nanoparticles for arsenic removal under real conditions on a pilot field site, in Asturias, Spain. http://www.nanoremeu/toolbox/FC1_postersaspx. Accessed 01 Dec 2017

  • Park H, Park YM, Yoo KM et al (2009) Reduction of nitrate by resin-supported nanoscale zero-valent iron. Water Sci Technol 59:2153–2157

    Article  PubMed  CAS  Google Scholar 

  • PEN (2017a) Project on emerging nanotechnologies. inventories. http://www.nanotechprojectorg/inventories/. Accessed 01 Dec 2017

  • PEN (2017b) Project on emerging nanotechnologies. inventories remediation map. http://www.nanotechprojectorg/inventories/remediation_map/. Accessed 01 Dec 2017

  • Peng X, Liu X, Zhou Y et al (2017) New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions. RSC Adv 7:8755–8761

    Article  CAS  Google Scholar 

  • Pustovalov AV, Zhuravkov SP (2015) Production of iron nanopowders by the electric explosion of wire. Adv Mat Res 1097:3–7

    Google Scholar 

  • Qiu XH, Fang ZQ, Liang B et al (2011) Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. J Hazard Mater 193:70–81

    Article  PubMed  CAS  Google Scholar 

  • Qu G, Kou L, Wang T et al (2017) Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium (VI) removal from groundwater in a permeable reactive column. J Environ Manage 201:378–387

    Article  PubMed  CAS  Google Scholar 

  • Quinn J, Geiger C, Clausen C et al (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. Environ Sci Technol 59:3485–3498

    CAS  Google Scholar 

  • Saaltink RM, Dekker SC, Eppinga MB et al (2017) Plant-specific effects of iron-toxicity in wetlands. Plant Soil 416:83–96

    Article  CAS  Google Scholar 

  • Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6:209

    Article  PubMed Central  CAS  Google Scholar 

  • Saleh N, Sirk K, Liu Y et al (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24:45–57

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL et al (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193

    Article  CAS  Google Scholar 

  • Ševců A, El-Temsah YS, Joner EJ et al (2011) Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ 26:271–281

    Article  PubMed  Google Scholar 

  • Ševců A, El-Temsah YS, Filip J et al (2017) Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Environ Sci Pollut Res 26:21191–21202

    Article  CAS  Google Scholar 

  • Seyedi SM, Rabiee H, Shahabadi SMS et al (2017) Synthesis of zero-valent iron nanoparticles via electrical wire explosion for efficient removal of heavy metals. Clean Soil Air Water 45:1600139

    Article  CAS  Google Scholar 

  • Shi LN, Zhang X, Chen ZL (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh R, Misra V (2015) Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer, Cham

    Google Scholar 

  • Singh R, Singh A, Misra V et al (2011) Degradation of lindane contaminated soil using zero-valent iron nanoparticles. J Biomed Nanotechnol 7:175–176

    Article  PubMed  CAS  Google Scholar 

  • Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zerovalent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39:6237–6245

    Article  PubMed  CAS  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  • Stejskal V, Lederer T, Kvapil P et al (2017) NanoRem bulletin: NanoRem pilot site – Spolchemie I, Czech Republic: nanoscale zero-valent iron remediation of chlorinated hydrocarbons. https://clu-in.org/download/newsltrs/tins/tins131.pdf. Accessed 01 Dec 2017

  • Su C, Puls RW, Krug TA et al (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46:5071–5084

    Article  PubMed  CAS  Google Scholar 

  • Taghavy A, Costanza J, Pennell KD et al (2010) Effectiveness of nanoscale zero-valent iron for treatment of a PCE–DNAPL source zone. J Contam Hydrol 118:128–142

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of the International Conference on Production Engineering, Tokyo, Part II. Japan Society of Precision Engineering, Tokyo

    Google Scholar 

  • The Royal Society and the Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. http://www.nanotec.org.uk/finalReport.htm. Accessed 01 Dec 2017

  • Thomas K, Aguar P, Kawasaki H et al (2006) Research strategies for safety evaluation of nanomaterials, part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92:23–32

    Article  PubMed  CAS  Google Scholar 

  • Thomé A, Reddy KR, Reginatto C et al (2015) Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut 226:121

    Article  CAS  Google Scholar 

  • Tiraferri A, Sethi R (2009) Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11:635–645

    Article  CAS  Google Scholar 

  • Tiraferri A, Chen KL, Sethi R et al (2008) Reduced aggregation and sedimentation of zerovalent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324:71–79

    Article  PubMed  CAS  Google Scholar 

  • Toli A, Chalastara K, Mystrioti C et al (2016) Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters. Environ Pollut 214:419–429

    Article  PubMed  CAS  Google Scholar 

  • Tosco T, Petrangeli Papini M, Cruz Viggi C et al (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21

    Article  CAS  Google Scholar 

  • Trujillo-Reyes J, Majumdar S, Botez CE et al (2014) Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263

    Article  PubMed  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2004) Cleaning up the nation’s waste sites: markets and technology trends. https://www.epa.gov/sites/production/files/2015-05/documents/2004market.pdf. Accessed 01 Dec 2017

  • USEPA (United States Environmental Protection Agency) (2005) Workshop on nanotechnology for site remediation. https://www.epa.gov/remedytech/nanotechnology-site-remediation-fact-sheet. Accessed 01 Dec 2017

  • USEPA (United States Environmental Protection Agency) (2014) Technical fact sheet – nanomaterials. EPA 505-F-14-002. https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_emergingcontaminant_nanomaterials_jan2014_final.pdf. Accessed 01 Dec 2017

  • van Liedekerke M, Prokop G, Rabl-Berger S et al (2014) Progress in the management of contaminated sites in Europe. Joint Research Centre, Report EUR 26376 EN. https://doi.org/10.2788/4658. http://bookshop.europa.eu/en/progress-in-the-management-of-contaminated-sites-in-europe-pbLBNA26376/. Accessed 01 Dec 2017

  • Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 21:1769–1780

    Article  CAS  Google Scholar 

  • Vítková M, Rákosová S, Michálková Z et al (2017) Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. J Environ Manage 186:268–276

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Zhang W (1997) Nanoscale metal particles for dechlorination of PCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wang Y, Fang Z, Kang Y et al (2014) Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J Hazard Mater 275:230–237

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Liu G, Li T et al (2015) Zero-valent iron nanoparticles (NZVI) supported by kaolinite for CuII and NiII ion removal by adsorption: kinetics, thermodynamics, and mechanism. Aust J Chem 68:1305–1315

    CAS  Google Scholar 

  • Wang J, Fang Z, Cheng W et al (2016) Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ Pollut 210:338–345

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Choi F, Acosta E (2017) Effect of surfactants on zero-valent iron nanoparticles (NZVI) reactivity. J Surfactant Deterg 20:577–588

    Article  CAS  Google Scholar 

  • Wei C, Li X (2013) Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media. Water Sci Technol 68:2287–2293

    Article  PubMed  CAS  Google Scholar 

  • Wei YT, Wu S, Yang SW et al (2012) Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater 211–212:373–380

    Article  PubMed  CAS  Google Scholar 

  • WHO (World Health Organization) (2016) An estimated 12.6 million deaths each year are attributable to unhealthy environments http://www.who.int/mediacentre/news/releases/2016/deaths-attributable-to-unhealthy-environments/en/. Accessed 01 Dec 2017

  • Wijesekara SSRMDHR, Basnayake BFA, Vithanage M (2014) Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate. Environ Sci Pollut Res 21:7075–7087

    Article  CAS  Google Scholar 

  • Wu D, Shen Y, Ding A et al (2013) Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge. J Hazard Mater 262:649–655

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Xie Y, Fang Z et al (2016) Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil. Chemosphere 162:235–242

    Article  PubMed  CAS  Google Scholar 

  • Xue D, Sethi R (2012) Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanopart Res 14:1239

    Article  CAS  Google Scholar 

  • Yan W, Herzing AA, Kiely CJ et al (2010) Nanoscale zerovalent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. J Contam Hydrol 118:96–104

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Lien HL, Koel BE et al (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci: Process Impacts 15:63–77

    CAS  Google Scholar 

  • Yirsaw BD, Megharaj M, Chen Z et al (2016) Environmental application and ecological significance of nano-zero valent iron. J Environ Sci 44:88–98

    Article  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang W, Wang C, Lien H (1998) Catalytic reduction of chlorinated hydrocarbons by bimetallic particles. Catal Today 40:387–395

    Article  CAS  Google Scholar 

  • Zhang MY, Wang Y, Zhao DZ et al (2010) Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chin Sci Bull 55:365–372

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Dai C et al (2014) Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): characterization and test in a two-stage system. Chem Eng J 244:218–226

    Article  CAS  Google Scholar 

  • Zhou Z, Dai C, Zhou X et al (2015) The removal of antimony by novel NZVI-zeolite: the role of iron transformation. Water Air Soil Pollut 226:76

    Article  CAS  Google Scholar 

  • Zhu HJ, Jia YF, Wu X et al (2009) Removal of arsenic from water by supported nano zerovalent iron on activated carbon. J Hazard Mater 172:1591–1596

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Y, Jin L, Luthy RG (2012) Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: Effects of particle properties and catalyst. Chemosphere 89:426–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou Y, Wang X, Khan A et al (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304

    Article  PubMed  CAS  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernández D, Du W et al (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses – a review. Plant Physiol Biochem 110:236–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Projects REHABILITA CTM2016-78222-C2-1-R (MINECO, Spain) and FP-16-NANOREMED (IMIDRA, Comunidad de Madrid, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mar Gil-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gil-Díaz, M., Lobo, M.C. (2018). Phytotoxicity of Nanoscale Zerovalent Iron (nZVI) in Remediation Strategies. In: Faisal, M., Saquib, Q., Alatar, A., Al-Khedhairy, A. (eds) Phytotoxicity of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-76708-6_13

Download citation

Publish with us

Policies and ethics