Defects in Indium-Related Nitride Compounds and Structural Design of AlN/GaN Superlattices

  • Kenji ShiraishiEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 269)


In this chapter, we focus on two topics related to the electronic and optical properties of III-nitride compounds. By applying of ab initio approach, we can analyze the electronic structures of III-nitride compounds as well as other semiconductors. This is exemplified by theoretical analysis of electronic structures of In-related nitride compounds, which exhibit characteristic behavior originating from the large difference in the covalent radius between In and N atoms. By considering atomic and electronics structures of nitrogen vacancy (VN) in InGaN in detail, the second nearest neighbor In–In interaction are crucial for unusually narrow bandgap of InN. Furthermore, this approach is applied to demonstrate AlN/GaN superlattice in the wurtzite phase with one or two GaN monolayers, which is efficient for near-band-edge c-plane emission of deep-ultraviolet (UV) LEDs. In particular, the emission wavelength is estimated to be 224 nm for the AlN/GaN superlattice with one GaN-monolayer, which is remarkably shorter than that for Al-rich AlGaN alloys. The optical matrix element of such superlattice is found to be 57% relative to the GaN bulk value.


  1. 1.
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, InGaN-based multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys. 37, L74 (1996)CrossRefGoogle Scholar
  2. 2.
    T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, Optical bandgap energy of wurtzite InN. Appl. Phys. Lett. 81, 1246 (2002)CrossRefGoogle Scholar
  3. 3.
    V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov, V.V. Vekshin, F. Bechstedt, J. Fürthmuller, H. Harima, A.V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, E.E. Haller, Band gap of InN and In-rich InxGa1-xN alloys (0.36 < x < 1). Phys. Status Solidi B 230, R4 (2002)CrossRefGoogle Scholar
  4. 4.
    Y. Nanishi, Y. Saito, T. Yamaguchi, RF-molecular beam epitaxy growth and properties of InN and related alloys. Jpn. J. Appl. Phys. 42, 2549 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Usuda, N. Hamada, K. Shiraishi, A. Oshiyama, Band structures of wurtzite InN and Ga1-xInxN by all-electron GW calculation. Jpn. J. Appl. Phys. 43, L407 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Otani, K. Shiraishi, A. Oshiyama, First-principles calculations of boron-related defects in SiO2. Phys. Rev. B. 68, 184112 (2003)CrossRefGoogle Scholar
  7. 7.
    D.J. Chadi, K.J. Chang, Magic numbers for vacancy aggregation in crystalline Si. Phys. Rev. B 38, 1523 (1988)CrossRefGoogle Scholar
  8. 8.
    C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004)CrossRefGoogle Scholar
  9. 9.
    T. Akiyama, A. Oshiyama, O. Sugino, Magic numbers of multivacancy in crystalline Si: tight-binding studies for the stability of the multivacancy. J. Phys. Soc. Jpn. 67, 4110 (1998)CrossRefGoogle Scholar
  10. 10.
    T. Akiyama, A. Oshiyama, First-principles study of hydrogen incorporation in multivacancy in silicon. J. Phys. Soc. Jpn. 70, 1627 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Fuchs, J.L.F. DaSilva, C. Stampfl, J. Neugebauer, M. Scheffler, Cohesive properties of group-III nitrides: A comparative study of all-electron and pseudopotential calculations using the generalized gradient approximation. Phys. Rev. B 65, 245212 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Obata, J.-I. Iwata, K. Shiraishi, A. Oshiyama, First principles studies on In-related nitride compounds. J. Cryst. Growth 311, 2772 (2009)CrossRefGoogle Scholar
  13. 13.
    X.M. Duan, C. Stampfl, Nitrogen vacancies in InN: vacancy clustering and metallic bonding from first principles. Phys. Rev. B 77, 115207 (2008)CrossRefGoogle Scholar
  14. 14.
    K.E. Newman, J.D. Dow, Theory of deep impurities in silicon-germanium alloys. Phys. Rev. B 30, 1929 (1984)CrossRefGoogle Scholar
  15. 15.
    T. Nishida, N. Kobayashi, 346 nm emission from AlGaN multi-quantum-well light emitting diode. Phys. Status Solidi A 176, 45 (1999)CrossRefGoogle Scholar
  16. 16.
    V. Adivarahan, W.H. Sun, A. Chitnis, M. Shatalov, S. Wu, H.P. Maruska, M.A. Khan, 250 nm AlGaN light-emitting diodes. Appl. Phys. Lett. 85, 2175 (2004)CrossRefGoogle Scholar
  17. 17.
    M.A. Khan, M. Shatalov, H.P. Maruska, H.M. Wang, E. Kuokstis, III–nitride UV devices. Jpn. J. Appl. Phys. 44, 7191 (2005)CrossRefGoogle Scholar
  18. 18.
    Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature (London) 441, 325 (2006)CrossRefGoogle Scholar
  19. 19.
    A.A. Yamaguchi, Anisotropic optical matrix elements in strained GaN quantum wells on semipolar and nonpolar substrates. Jpn. J. Appl. Phys. 46, L789 (2007)CrossRefGoogle Scholar
  20. 20.
    A.A. Yamaguchi, Valence band engineering for remarkable enhancement of surface emission in AlGaN deep-ultraviolet light emitting diodes. Phys. Status Solidi C 5, 2364 (2008)CrossRefGoogle Scholar
  21. 21.
    Y. Taniyasu, M. Kasu, Origin of exciton emissions from an AlN p-n junction light-emitting diode. Appl. Phys. Lett. 98, 131910 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Suzuki, T. Uenoyama, A. Yanase, First-principles calculations of effective-mass parameters of AlN and GaN. Phys. Rev. B 52, 8132 (1995)CrossRefGoogle Scholar
  23. 23.
    S.-H. Wei, A. Zunger, Valence band splittings and band offsets of AlN, GaN, and InN. Appl. Phys. Lett. 69, 2719 (1996)CrossRefGoogle Scholar
  24. 24.
    K. Kim, W.R.L. Lambrecht, B. Segall, M. van Schilfgaarde, Effective masses and valence-band splittings in GaN and AlN. Phys. Rev. B 56, 7363 (1997)CrossRefGoogle Scholar
  25. 25.
    D.C. Reynolds, D.C. Look, W. Kim, Ö. Aktas, A. Botchkarev, A. Salvador, H. Morkoç, D.N. Talwar, Ground and excited state exciton spectra from GaN grown by molecular-beam epitaxy. J. Appl. Phys. 80, 594 (1996)CrossRefGoogle Scholar
  26. 26.
    I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003)CrossRefGoogle Scholar
  27. 27.
    H. Kawanishi, E. Niikura, M. Yamamoto, S. Takeda, Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in AlxGa1−xN. Appl. Phys. Lett. 89, 251107 (2006)CrossRefGoogle Scholar
  28. 28.
    K. Kamiya, Y. Ebihara, M. Kasu, K. Shiraishi, Efficient structure for deep-ultraviolet light-emitting diodes with high emission efficiency: a first-principles study of AlN/GaN superlattice. Jpn. J. Appl. Phys. 51, 02BJ11 (2012)CrossRefGoogle Scholar
  29. 29.
    K. Kamiya, Y. Ebihara, K. Shiraishi, M. Kasu, Structural design of AlN/GaN superlattices for deep-ultraviolet light-emitting diodes with high emission efficiency. Appl. Phys. Lett. 99, 151108 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Materials and Systems for SustainabilityNagoya UniversityNagoyaJapan

Personalised recommendations