Skip to main content

Fundamental Properties of III-Nitride Surfaces

  • Chapter
  • First Online:
Book cover Epitaxial Growth of III-Nitride Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 269))

Abstract

The control of growth conditions is one of the important factors for fabricating high-quality crystals and would be achieved through the understanding of surface reconstructions. It is well known that reconstructed structures appear on the growth front (surfaces) of semiconductor materials, so that investigations for the reconstructions on III-nitride surfaces are necessary from theoretical viewpoints taking growth conditions into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.K. Biegelsen, R.D. Bringans, J.E. Northrup, L.-E. Swartz, Reconstructions of GaAs(\(\bar{1}\bar{1}\bar{1}\)) surfaces observed by scanning tunneling microscopy. Phys. Rev. Lett. 65, 452 (1990)

    Article  CAS  Google Scholar 

  2. T. Ohno, Energetics of as dimers on GaAs(001) as-rich surfaces. Phys. Rev. Lett. 70, 631 (1993)

    Article  CAS  Google Scholar 

  3. J.E. Northrup, S. Froyen, Energetics of GaAs(100)–(2 × 4) and –(4 × 2) reconstructions. Phys. Rev. Lett. 71, 22 (1993)

    Article  Google Scholar 

  4. A. Kley, N. Moll, E. Pehlke, M. Scheffler, GaAs equilibrium crystal shape from first principles. Phys. Rev. B 54, 8844 (1996)

    Article  Google Scholar 

  5. J.E. Northrup, J. Neugebauer, R.M. Feenstra, A.R. Smith, Structure of GaN(0001): the laterally contracted Ga bilayer model. Phys. Rev. B 61, 9932 (2000)

    Article  CAS  Google Scholar 

  6. A. Ishii, First-principles study for molecular beam epitaxial growth of GaN(0001). Appl. Surf. Sci. 216, 447 (2003)

    Article  CAS  Google Scholar 

  7. Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi, T. Ohachi, A new theoretical approach to adsorption–desorption behavior of Ga on GaAs surfaces. Surf. Sci. 493, 178 (2001)

    Article  CAS  Google Scholar 

  8. T. Ito, H. Ishizaki, T. Akiyama, K. Nakamura, An ab initio-based approach to phase diagram calculations for GaAs(001) surfaces. e-J. Surf. Sci. Nanotech. 3, 488 (2005)

    Article  CAS  Google Scholar 

  9. H. Tatematsu, K. Sano, T. Akiyama, K. Nakamura, T. Ito, Ab initio-based approach to initial growth processes on GaAs(111)B-(2 × 2) surfaces: self-surfactant effect of Ga adatoms revisited. Phys. Rev. B 77, 233306 (2008)

    Article  Google Scholar 

  10. T. Ito, N. Ishimure, T. Akiyama, K. Nakamura, Ab initio-based approach to adsorption–desorption behavior on the InAs(111)A heteroepitaxially grown on GaAs substrate. J. Cryst. Growth 318, 72 (2011)

    Article  CAS  Google Scholar 

  11. Y. Kangawa, Y. Matsuo, T. Akiyama, T. Ito, K. Shiraishi, K. Kakimoto, Theoretical approach to initial growth kinetics of GaN on GaN(001). J. Cryst. Growth 300, 62 (2007)

    Article  CAS  Google Scholar 

  12. T. Ito, T. Akiyama, K. Nakamura, Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth. J. Cryst. Growth 311, 698 (2009)

    Article  CAS  Google Scholar 

  13. T. Yamashita, T. Akiyama, K. Nakamura, T. Ito, Surface reconstructions on GaN and InN semipolar \(\left( {11\bar{2}2} \right)\) surfaces. Jpn. J. Appl. Phys. 48, 120201 (2009)

    Article  Google Scholar 

  14. T. Ito, T. Akiyama, K. Nakamura, An ab initio-based approach to the stability of GaN(0001) surfaces under Ga-rich conditions. J. Cryst. Growth 311, 3093 (2009)

    Article  CAS  Google Scholar 

  15. Y. Kangawa, T. Akiyama, T. Ito, K. Shiraishi, K. Kakimoto, Theoretical approach to structural stability of GaN: how to grow cubic GaN. J. Cryst. Growth 311, 3106 (2009)

    Article  CAS  Google Scholar 

  16. T. Akiyama, D. Ammi, K. Nakamura, T. Ito, Reconstructions of GaN and InN semipolar \(\left( {10\bar{1}\bar{1}} \right)\) surfaces. Jpn. J. Appl. Phys. 48, 100201 (2009)

    Google Scholar 

  17. T. Akiyama, D. Ammi, K. Nakamura, T. Ito, Surface reconstruction and magnesium incorporation on semipolar GaN\(\left( {1\bar{1}01} \right)\) surfaces. Phys. Rev. B 81, 245317 (2010)

    Google Scholar 

  18. T. Akiyama, T. Yamashita, K. Nakamura, T. Ito, Stability of hydrogen on nonpolar and semipolar nitride surfaces: role of surface orientation. J. Cryst. Growth 318, 79 (2011)

    Article  CAS  Google Scholar 

  19. T. Ito, T. Akiyama, K. Nakamura, Ab initio-based approach to reconstruction, adsorption and incorporation on GaN surfaces. Semicond. Sci. Technol. 27, 024010 (2012)

    Article  Google Scholar 

  20. T. Akiyama, D. Obara, K. Nakamura, T. Ito, Reconstructions on AlN polar surfaces under hydrogen rich conditions. Jpn. J. Appl. Phys. 51, 018001 (2012)

    Article  Google Scholar 

  21. T. Akiyama, Y. Saito, K. Nakamura, T. Ito, Reconstructions on AlN nonpolar surfaces in the presence of hydrogen. Jpn. J. Appl. Phys. 51, 048002 (2012)

    Article  Google Scholar 

  22. T. Akiyama, K. Nakamura, T. Ito, Ab initio-based study for adatom kinetics on AlN(0001) surfaces during metal-organic vapor-phase epitaxy growth. Appl. Phys. Lett. 100, 251601 (2012)

    Article  Google Scholar 

  23. Y. Kangawa, T. Akiyama, T. Ito, K. Shiraishi, T. Nakayama, Surface stability and growth kinetics of compound semiconductors: an ab initio-based approach. Materials 6, 3309 (2013)

    Article  CAS  Google Scholar 

  24. Y. Takemoto, T. Akiyama, K. Nakamura, T. Ito, Systematic theoretical investigations on surface reconstruction and adatom kinetics on AlN semipolar surfaces. e-J. Surf. Sci. Nanotech. 13, 239 (2015)

    Article  CAS  Google Scholar 

  25. Y. Takemoto, T. Akiyama, K. Nakamura, T. Ito, Ab initio-based study for surface reconstructions and adsorption behavior on semipolar AlN\(\left( {11\bar{2}2} \right)\) surfaces during metal-organic vapor-phase epitaxy growth. Jpn. J. Appl. Phys. 54, 0875502 (2015)

    Google Scholar 

  26. T. Akiyama, Y. Takemoto, K. Nakamura, T. Ito, Theoretical investigations of initial growth processes on semipolar AlN\(\left( {11\bar{2}2} \right)\) surfaces under metal–organic vapor-phase epitaxy growth condition. Jpn. J. Appl. Phys. 55, 05FA06 (2016)

    Article  Google Scholar 

  27. C.G. Van de Walle, J. Neugebauer, First-principles surface phase diagram for hydrogen on GaN surfaces. Phys. Rev. Lett. 88, 066103 (2002)

    Article  Google Scholar 

  28. H. Shu, X. Chen, R. Dong, X. Wang, W. Lu, Thermodynamic phase diagram for hydrogen on polar InP(111)B surfaces. J. Appl. Phys. 107, 063516 (2010)

    Article  Google Scholar 

  29. K. Yamada, N. Inoue, J. Osaka, K. Wada, In situ observation of molecular beam epitaxy of GaAs and AlGaAs under deficient As4 flux by scanning reflection electron microscopy. Appl. Phys. Lett. 55, 622 (1989)

    Article  CAS  Google Scholar 

  30. T. Kojima, N.J. Kawai, T. Nakagawa, K. Ohta, T. Sakamoto, M. Kawashima, Layer-by-layer sublimation observed by reflection high-energy electron diffraction intensity oscillation in a molecular beam epitaxy system. Appl. Phys. Lett. 47, 286 (1985)

    Google Scholar 

  31. E.M. Gibson, C.T. Foxon, J. Zhang, B.A. Joyce, Gallium desorption from GaAs and (Al, Ga)As during molecular beam epitaxy growth at high temperatures. Appl. Phys. Lett. 57, 1203 (1990)

    Article  CAS  Google Scholar 

  32. J.E. Northrup J. Neugebauer, Theory of GaN\(\left( {10\bar{1}0} \right)\) and \(\left( {11\bar{2}0} \right)\) surfaces. Phys. Rev. B 53, R10477 (1996)

    Google Scholar 

  33. A.R. Smith, R.M. Feenstra, D.W. Greve, J. Neugebauer, J.E. Northrup, Reconstructions of the GaN(0001) surface. Phys. Rev. Lett. 79, 3934 (1997)

    Article  CAS  Google Scholar 

  34. J.E. Northrup, R. Di Felice, J. Neugebauer, Atomic structure and stability of AlN(0001) and \((000\bar{1})\) surfaces. Phys. Rev. B 55, 13878 (1997)

    Google Scholar 

  35. J. Fritsch, O.F. Sankey, K.E. Schmidt, J.B. Page, Ab initio calculation of the stoichiometry and structure of the (0001) surfaces of GaN and AlN. Phys. Rev. B 57, 15360 (1998)

    Article  CAS  Google Scholar 

  36. C.D. Lee, Y. Dong, R.M. Feenstra, J.E. Northrup, J. Neugebauer, Reconstructions of the AlN(0001) surface. Phys. Rev. B 68, 205317 (2003)

    Article  Google Scholar 

  37. C.K. Gan, D.J. Srolovitz, First-principles study of wurtzite InN(0001) and \(\left( {000\bar{1}} \right)\) surfaces. Phys. Rev. B 74, 115319 (2006)

    Google Scholar 

  38. D. Segev, C.G. van de Walle, Surface reconstructions on InN and GaN polar and nonpolar surfaces. Surf. Sci. 601, L15 (2007)

    Article  CAS  Google Scholar 

  39. H. Suzuki, R. Togashi, H. Murakami, Y. Kumagai, A. Koukitu, Theoretical analysis for surface reconstruction of AlN and InN in the presence of hydrogen. Jpn. J. Appl. Phys. 46, 5112 (2007)

    Article  CAS  Google Scholar 

  40. M.S. Miao, A. Janotti, C.G. van de Walle, Reconstructions and origin of surface states on AlN polar and nonpolar surfaces. Phys. Rev. B 80, 155319 (2009)

    Article  Google Scholar 

  41. M.D. Pashley, K.W. Haberern, W. Friday, J.M. Woodall, P.D. Kirchner, Structure of GaAs(001) (2 × 4)-c(2 × 8) determined by scanning tunneling microscopy. Phys. Rev. Lett. 60, 2176 (1998)

    Article  Google Scholar 

  42. F. Bernardini, V. Fiorentini, Macroscopic polarization and band offsets at nitride heterojunctions. Phys. Rev. B 57, R9427 (1997)

    Article  Google Scholar 

  43. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000)

    Article  CAS  Google Scholar 

  44. K. Nishizuka, M. Funato, Y. Kawakami, S. Fujita, Y. Narukawa, T. Mukai, Efficient radiative recombination from \(11\bar{2}2\)-oriented In x Ga1−xN multiple quantum wells fabricated by the regrowth technique, Appl. Phys. Lett. 85, 3122 (2004)

    Article  CAS  Google Scholar 

  45. K. Nishizuka, M. Funato, Y. Kawakami, Y. Narukawa, T. Mukai, Efficient rainbow color luminescence from In x Ga1−xN single quantum wells fabricated on {11\(\bar{2}\)2} microfacets. Appl. Phys. Lett. 87, 231901 (2005)

    Article  Google Scholar 

  46. R. Sharma, P.M. Pattison, H. Masui, R. M. Farrel, T.J. Baker, B.A. Haskell, F. Wu, S.P. DenBaars, J.S. Speck, S. Nakamura, Demonstration of a semipolar \(\left( {10\bar{1}\bar{3}} \right)\) InGaN/GaN green light emitting diode, Appl. Phys. Lett. 87, 231110 (2005)

    Google Scholar 

  47. T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Characterization of planar semipolar gallium nitride films on spinel substrates. Jpn. J. Appl. Phys. 44, L920 (2005)

    Article  CAS  Google Scholar 

  48. A. Chakraborty, T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Milliwatt power blue InGaN/GaN light-emitting diodes on semipolar GaN templates. Jpn. J. Appl. Phys. 44, L945 (2005)

    Article  CAS  Google Scholar 

  49. M. Funato, T. Kotani, T. Kondou, Y. Kawakami, Y. Narukawa, T. Mukai, Tailored emission color synthesis using microfacet quantum wells consisting of nitride semiconductors without phosphors. Appl. Phys. Lett. 88, 261920 (2006)

    Article  Google Scholar 

  50. M. Ueda, K. Kojima, M. Funato, Y. Kawakami, Y. Narukawa, T. Mukai, Epitaxial growth and optical properties of semipolar \(\left( {11\bar{2}2} \right)\) GaN and InGaN/GaN quantum wells on GaN bulk substrates. Appl. Phys. Lett. 89, 211907 (2006)

    Article  Google Scholar 

  51. J. Stellmach, M. Frentrup, F. Mehnke, M. Pristovsek, T. Wernicke, M. Kneissl, MOVPE growth of semipolar \(\left( {11\bar{2}2} \right)\) AlN on m-plane \(\left( {10\bar{1}0} \right)\) sapphire. J. Cryst. Growth 355, 59 (2012)

    Google Scholar 

  52. Q.K. Xue, Q.Z. Xue, R.Z. Bakhtizin, Y. Hasegawa, I.S.T. Tsong, T. Sakurai, T. Ohno, Structures of GaN(0001)–(2 × 2), –(4 × 4), and –(5 × 5) surface reconstructions. Phys. Rev. Lett. 82, 3074 (1999)

    Article  CAS  Google Scholar 

  53. A.R. Smith, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, J.E. Northrup, GaN(0001) surface structures studied using scanning tunneling microscopy and first-principles total energy calculations. Surf. Sci. 423, 70 (1999)

    Article  CAS  Google Scholar 

  54. M.H. Xie, L.X. Zheng, X.Q. Dai, H.S. Wu, S.Y. Tong, A model for GaN ghost islands. Surf. Sci. 558, 195 (2004)

    Article  CAS  Google Scholar 

  55. V. Ramachandran, C.D. Lee, R.M. Feenstra, A.R. Smith, J.E. Northrup, D.W. Greve, Structure of clean and arsenic-covered GaN(0001) surfaces. J. Cryst. Growth 209, 355 (2000)

    Article  CAS  Google Scholar 

  56. R.M. Feenstra, J.E. Northrup, J. Neuegbauer, Review of structure of bare and adsorbate-covered GaN(0001) surfaces. MRS Internet J. Nitride Semicond. Res. 1, 1234 (2002)

    Google Scholar 

  57. S. Vézian, F. Semond, J. Massies, D.W. Bullock, Z. Ding, P.M. Thibado, Origins of GaN(0001) surface reconstructions. Surf. Sci. 541, 242 (2003)

    Article  Google Scholar 

  58. L. Lahourcade, J. Renard, B. Gayral, E. Monroy, M.P. Chaivat, P. Ruterana, Ga kinetics in plasma-assisted molecular-beam epitaxy of GaN\(\left( {11\bar{2}2} \right)\): effect on the structural and optical properties. J. Appl. Phys. 103, 93514 (2008)

    Google Scholar 

  59. J.B. MacChesney, P.M. Bridenbaugh, P.B. O’Connor, Thermal stability of indium nitride at elevated temperatures and nitrogen pressures. Mater. Res. Bull. 5, 783 (1970)

    Article  CAS  Google Scholar 

  60. O. Ambacher, M.S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R.A. Fischer, A. Miehr, A. Bergmaier, G. Dollinger, Thermal stability and desorption of group III nitrides prepared by metal organic chemical vapor deposition. J. Vac. Sci. Technol. B 14, 3532 (1996)

    Article  CAS  Google Scholar 

  61. V.Y. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emptsev, S.V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A.V. Mudryi, J. Aderhold et al., Absorption and emission of hexagonal InN: evidence of narrow fundamental band gap. Phys. Status Solidi B 229, R1 (2002)

    Article  CAS  Google Scholar 

  62. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002)

    Article  CAS  Google Scholar 

  63. Y. Nanishi, Y. Saito, T. Yamaguchi, RF-molecular beam epitaxy growth and properties of InN and related alloys. Jpn. J. Appl. Phys. 42, 2549 (2003)

    Article  CAS  Google Scholar 

  64. Y. Saito, Y. Tanabe, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, Y. Nanishi, Polarity of high-quality indium nitride grown by RF molecular beam epitaxy. Phys. Status Solidi B 228, 13 (2001)

    Article  CAS  Google Scholar 

  65. A. Koukitsu, T. Taki, N. Takahashi, H. Seki, Thermodynamic study on the role of hydrogen during the MOVPE growth of group III nitrides. J. Cryst. Growth 197, 99 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Akiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akiyama, T. (2018). Fundamental Properties of III-Nitride Surfaces. In: Matsuoka, T., Kangawa, Y. (eds) Epitaxial Growth of III-Nitride Compounds. Springer Series in Materials Science, vol 269. Springer, Cham. https://doi.org/10.1007/978-3-319-76641-6_4

Download citation

Publish with us

Policies and ethics