Advertisement

Computational Methods

  • Tomonori Ito
  • Toru Akiyama
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 269)

Abstract

Computational approach to investigate epitaxial growth of III-nitride compounds is primarily concerned with the numerical computation of electronic structures by ab initio calculations and semi-empirical atomistic techniques.

References

  1. 1.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)CrossRefGoogle Scholar
  2. 2.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  3. 3.
    J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981)CrossRefGoogle Scholar
  4. 4.
    D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980)CrossRefGoogle Scholar
  5. 5.
    J.P. Perdew, in Electronic Structure of Solids ‘91, ed. by P. Zeische, H. Eschrig (Academic, Berlin, 1991)Google Scholar
  6. 6.
    J.P. Perdew, K, Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3365 (1996); 78, 1396 (1997)Google Scholar
  7. 7.
    A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  8. 8.
    C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  9. 9.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003)CrossRefGoogle Scholar
  10. 10.
    M.T. Yin, M.L. Cohen, Theory of static structural properties, crystal stability, and phase transformations: application to Si and Ge. Phys. Rev. B 26, 5668 (1982)CrossRefGoogle Scholar
  11. 11.
    O.H. Nielsen, R.M. Martin, Stresses in semiconductors: ab initio calculations on Si, Ge, and GaAs. Phys. Rev. B 32, 3792 (1985)CrossRefGoogle Scholar
  12. 12.
    R.W. Godby, M. Schlüter, L.J. Sham, Accurate exchange-correlation potential for silicon and its discontinuity on addition of an electron. Phys. Rev. Lett. 56, 2415 (1986)CrossRefGoogle Scholar
  13. 13.
    M.S. Hybertsen, S.G. Louie, First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418 (1985)CrossRefGoogle Scholar
  14. 14.
    M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986)CrossRefGoogle Scholar
  15. 15.
    A. Baldereschi, Mean-value point in the Brillouin zone. Phys. Rev. B 7, 5212 (1973)CrossRefGoogle Scholar
  16. 16.
    D.J. Chadi, M.L. Cohen, Special points in the Brillouin zone. Phys. Rev. B 8, 5747 (1973)CrossRefGoogle Scholar
  17. 17.
    J. Ihm, A. Zunger, M.L. Cohen, Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Phys. 12, 4409 (1979)CrossRefGoogle Scholar
  18. 18.
    M.C. Payne, M.P. Teter, D.C. Allen, T.A. Alrias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)CrossRefGoogle Scholar
  19. 19.
    N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)CrossRefGoogle Scholar
  20. 20.
    C.P. Kerker, Non-singular atomic pseudopotentials for solid state applications. J. Phys. C13, L189 (1980)Google Scholar
  21. 21.
    D.R. Hamman, M. Schlüter, C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494 (1979)CrossRefGoogle Scholar
  22. 22.
    G.B. Bachelet, D.R. Hamman, M. Schlüter, Pseudopotentials that work: From H to Pu. Phys. Rev. B 26, 4199 (1982)CrossRefGoogle Scholar
  23. 23.
    L. Kleinman, D.M. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425 (1982)CrossRefGoogle Scholar
  24. 24.
    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)CrossRefGoogle Scholar
  25. 25.
    P.N. Keating, Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145, 637 (1966)CrossRefGoogle Scholar
  26. 26.
    R.M. Martin, Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005 (1970)CrossRefGoogle Scholar
  27. 27.
    F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985)CrossRefGoogle Scholar
  28. 28.
    G.C. Abell, Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31, 6184 (1984)CrossRefGoogle Scholar
  29. 29.
    J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)CrossRefGoogle Scholar
  30. 30.
    K.E. Khor, S. Das, Sarma, “Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors”. Phys. Rev. B 38, 3318 (1988)CrossRefGoogle Scholar
  31. 31.
    W.H. Moon, M.S. Son, H.J. Hwang, Molecular-dynamics simulation of structural properties of cubic boron nitride. Phys. Rev. B 336, 329 (2003)CrossRefGoogle Scholar
  32. 32.
    W.H. Moon, H.J. Hwang, A modified Stillinger-Weber empirical potential for boron nitride. Appl. Surf. Sci. 239, 376 (2005)CrossRefGoogle Scholar
  33. 33.
    S.Q. Wang, Y.M. Wang, H.Q. Ye, A theoretical study on various models for the domain boundaries in epitaxial GaN films. Appl. Phys. A 70, 475 (2000)CrossRefGoogle Scholar
  34. 34.
    N. Aichoune, V. Potin, P. Ruteran, A. Hairie, G. Nouet, E. Paumier, An empirical potential for the calculation of the atomic structure of extended defects in wurtzite GaN. Comp. Mat. Sci. 17, 380 (2000)CrossRefGoogle Scholar
  35. 35.
    A. Béré, A. Serra, Atomic structure of dislocation cores in GaN. Phys. Rev. B 65, 205323 (2002)CrossRefGoogle Scholar
  36. 36.
    J. Nord, K. Albe, P. Erhart, K. Nordlund, Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J. Phys.: Condens. Matter 15, 5649 (2003)Google Scholar
  37. 37.
    T. Ito, Recent progress in computer aided materials design for compound semiconductors. J. Appl. Phys. 77, 4845 (1995)CrossRefGoogle Scholar
  38. 38.
    T. Ito, T. Akiyama, and K. Nakamura, Systematic approach to developing empirical interatomic potentials for III–N semiconductors. Jpn. J. Appl. Phys. 55, 05FM02 (2016)Google Scholar
  39. 39.
    M.Z. Bazant, E. Kaxiras, J.F. Justo, Environment-dependent interatomic potential for bulk silicon. Phys. Rev. B 56, 8542 (1997)CrossRefGoogle Scholar
  40. 40.
    Y. Takemoto, T. Akiyama, K. Nakamura, T. Ito, Theoretical study for crystal structure deformation in ANB8-N compounds. e-J. Surf. Sci. Nanotechnol. 12, 79 (2014)CrossRefGoogle Scholar
  41. 41.
    M.B. Kaunoun, A.E. Merad, G. Merad, J. Cibert, H. Aourag, Prediction study of elastic properties under pressure effect for zincblende BN, AlN, GaN and InN. Solid-State Electron. 48, 1601 (2004)CrossRefGoogle Scholar
  42. 42.
    M. Grimsditch, E.S. Zouboulis, A. Polian, Elastic constants of boron nitride. J. Appl. Phys. 76, 832 (1994)CrossRefGoogle Scholar
  43. 43.
    A. Trampert, O. Brandt, K.H. Ploog, Crystal structure of group III Nitrides, in Semiconductors and Semimetals, ed. by J.I. Pankove, T.D. Mouskas, vol. 50, Chap. 7 (Academic Press, San Diego, 1998)Google Scholar
  44. 44.
    M.E. Sherwin, T.J. Drummond, Predicted elastic constants and critical layer thicknesses for cubic phase AlN, GaN, and InN on β-SiC. J. Appl. Phys. 69, 8423 (1991)CrossRefGoogle Scholar
  45. 45.
    T. Ito, T. Akiyama, K. Nakamura, Empirical interatomic potential approach to the stability of graphitic structure in ANB8-N compounds. Jpn. J. Appl. Phys. 53, 110304 (2014)CrossRefGoogle Scholar
  46. 46.
    W.A. Harrison, Electronic Structure and the Properties of Solids, Chap. 8 (W. H. Freeman & Company, San Francisco, 1980)Google Scholar
  47. 47.
    S. Muramatsu, M. Kitamura, Simple expressions for elastic constants c11, c12, and c44 and internal displacements of semiconductors. J. Appl. Phys. 73, 4270 (1993)CrossRefGoogle Scholar
  48. 48.
    T. Ito, Simple criterion for wurtzite-zinc-blende polytypism in semiconductors. Jpn. J. Appl. Phys. 37, L1217 (1998)CrossRefGoogle Scholar
  49. 49.
    C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zinc-blende–wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086 (1992)CrossRefGoogle Scholar
  50. 50.
    J.C. Phillips, Ionicity of the Chemical Bond in Crystals. Rev. Mod. Phys. 42, 317 (1970)CrossRefGoogle Scholar
  51. 51.
    T. Ito, T. Akiyama, K. Nakamura, Simple systematization of structural stability for ANB8-N compounds. Jpn. J. Appl. Phys. 46, 345 (2007)CrossRefGoogle Scholar
  52. 52.
    T. Ito, T. Akiyama, K. Nakamura, A simple approach to the polytypism in SiC. J. Cryst. Growth 362, 207 (2013)CrossRefGoogle Scholar
  53. 53.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)CrossRefGoogle Scholar
  54. 54.
    Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi, T. Ohachi, A new theoretical approach to adsorption–desorption behavior of Ga on GaAs surfaces. Surf. Sci. 493, 178 (2001)CrossRefGoogle Scholar
  55. 55.
    Y. Kangawa, T. Ito, Y.S. Hiraoka, A. Taguchi, K. Shiraishi, T. Ohachi, Theoretical approach to influence of As2 pressure on GaAs growth kinetics. Surf. Sci. 507, 285 (2002)CrossRefGoogle Scholar
  56. 56.
    S. Clarke, D.D. Vvedensky, Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: a computational modeling approach. Phys. Rev. Lett. 58, 2235 (1987)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics EngineeringMie UniversityTsuJapan

Personalised recommendations