Skip to main content

Temperature Control

  • Chapter
  • First Online:
Thermal Cracking of Massive Concrete Structures

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 27))

Abstract

Temperature rises are definitely one of the most important driving forces for thermal cracking in mass concrete, together with the restraint to deformation. Therefore, amongst the most widespread measures that can be taken to minimize the risks of thermal cracking, the temperature control of concrete since its production and throughout construction is of utmost significance. Following Chap. 5 where temperature control of concrete by limiting the heat generation potential of the binder in the mixture was already addressed, this chapter is dedicated to a review on measures that can be taken to control concrete temperature at several levels, mainly focused in limiting temperature rises due to cement hydration heat: (i) pre-cooling of mix constituents; (ii) cooling concrete during the mixing procedures; (iii) controlling temperature during transport and placement; (iv) selecting and designing suitable surface measures for temperature control; (v) post-cooling with water or air; (vi) scheduling of construction stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Concrete Institute ACI. (2005a). 207.4R-05 Cooling and insulating systems for mass concrete. ACI Committee 207. ISBN: 9780870311918.

    Google Scholar 

  • American Concrete Institute ACI. (2005b). 207.1R-05 Guide to mass concrete. ACI Committee 207. ISBN: 9780870312014.

    Google Scholar 

  • American Concrete Institute ACI. (2007). 207.2R-07 Report on thermal and volume change effects on cracking of mass concrete. ACI Committee 207. ISBN: 9780870312588.

    Google Scholar 

  • American Concrete Institute ACI. (2000). 304R-00: Guide for Measuring, Mixing, Transporting, and Placing Concrete (Reapproved 2009), ACI Committee 304. ISBN: 9780870313080.

    Google Scholar 

  • American Concrete Institute ACI. (2016). 301–16 Specifications for Structural Concrete. ACI Committee 301. ISBN: 9781942727866.

    Google Scholar 

  • American Concrete Institute ACI. (2010). 305R-10 Guide to hot weather concreting. ACI Committee 305. ISBN: 9780870313967.

    Google Scholar 

  • American Concrete Institute ACI. (2011). 308.1–11 Specification for Curing Concrete. ACI Committee 308. ISBN: 9780870314391.

    Google Scholar 

  • American Concrete Institute ACI. (2014). 347R-14 Guide to Formwork for Concrete. ACI Committee 347. ISBN: 9780870319105.

    Google Scholar 

  • Andriolo, F. M., & Skwarczynski, T. M. (1988). Concreto pré-refrigerado no Brasil: Uma evolução com mais de 20 anos. (Pre-cooled concrete in Brazil: An evolution of more than 20 years) Grapho, São Paulo, Brazil.

    Google Scholar 

  • Azenha, M., Lameiras, R. M., Sousa, C., & Barros, J. (2014). Application of air cooled pipes for reduction of early age cracking risk in a massive RC wall. Engineering Structures, 62–63, 148–163.

    Article  Google Scholar 

  • Baber, J., Salet, T. A. M., & Lundberg, J. K. (1998). Øresund tunnel control of early age cracking. In Proceedings of the IABSE Stockholm Colloquium: Tunnel Structures, Stockholm, Sweden (IABSE Report 78) (pp. 175–180). Zürich, Switzerland: IABSE.

    Google Scholar 

  • Bamforth, P., & Price, W. (1995). Report 135. Concreting deep lifts and large volume pours. London: CIRIA (Construction Industry Research and Information Association). ISBN-13: 978-0727720252.

    Google Scholar 

  • Bamforth, P. (2007). CIRIA C660: Early-age thermal crack control in concrete. London: CIRIA (Construction Industry Research and Information Association). ISBN: 978-0-86017-660-2.

    Google Scholar 

  • Beaver, W. (2004). Liquid nitrogen for concrete cooling. Concrete International, 26, 93–95.

    Google Scholar 

  • Bentz, D. P., & Turpin, R. (2007). Potential applications of phase change materials in concrete technology. Cement & Concrete Composites, 29(7), 527–532.

    Article  Google Scholar 

  • Bofang, Z. (2013). Thermal stresses and temperature control in mass concrete. Tsinghua University Press, published by Butterworth-Heinemann. ISBN-13: 978-0124077232.

    Google Scholar 

  • Buenfeld, N. R., & Yang, R. (2001). C530 On-site curing of concrete—microstructure and durability. London: CIRIA (Construction Industry Research and Information Association). ISBN: 9780870314391.

    Google Scholar 

  • CEN. (2013). EN 206: Concrete: Specification, performance, production and conformity.

    Google Scholar 

  • Choi, W., Khil, B., Chae, Y., Liang, Q., & Yun, H. (2014). Feasibility of using phase change materials to control the heat of hydration in massive concrete structures. The Scientific World Journal, 2014, Article ID 781393, 6 p. http://dx.doi.org/10.1155/2014/781393.

  • Concrete Society. (2014). CAS20 Curing concrete. Concrete advice n.20. Concrete Society.

    Google Scholar 

  • Du, C. (2016). Temperature control for the Gomal Zam RCC Arch-Gravity Dam. Concrete International, 38(11), 31–36.

    Google Scholar 

  • Fairbairn, E., Silvoso, M., Toledo Filho, R., Alves, J. L. D., & Ebecken, N. F. F. (2004). Optimization of mass concrete construction using genetic algorithms. Computers & Structures, 82, 281–289.

    Article  Google Scholar 

  • FDOT. (2010). Standard specifications for road and bridge construction. Tallahssee, FL: Florida Department of Transportation.

    Google Scholar 

  • Gajda, J., & Vangeem, M. (2002). Controlling temperatures in mass concrete. Concrete International, 24(2002), 58–62.

    Google Scholar 

  • Hedlund, H., & Groth, P. (1998). Air cooling of concrete by means of embedded cooling pipes-Part I: Laboratory tests of heat transfer coefficients. Materials and Structures, 31, 329–334.

    Article  Google Scholar 

  • Honório, T., Bary, B., & Benboudjema, F. (2016). Factors affecting the thermo-chemo-mechanical behaviour of massive concrete structures at early-age. Materials and Structures, 49, 3055–3073.

    Article  Google Scholar 

  • Huo, X. S., & Wong, L. U. (2006). Experimental study of early-age behavior of high performance concrete deck slabs under different curing methods. Construction and Building Materials, 20, 1049–1056.

    Article  Google Scholar 

  • ICOLD. (1990). Bulletin nº76, conventional methods in dam construction. International Commission on Large Dams.

    Google Scholar 

  • Ishikawa, S., Matsukawa, K., Nakanishi, S., & Kawai, H. (2007). Air pipe cooling system. Concrete International, 29(12), 46–49.

    Google Scholar 

  • Japanese Concrete Institute JCI. (2012). Guidelines for control of cracking of mass concrete, 2012 (English version translated from the Japanese Version of 2008).

    Google Scholar 

  • JSCE. (2010a). Guidelines for concrete N. 16. Standard specifications for concrete structures 2007—Materials and construction. Tokyo: Japan Society of Civil Engineers.

    Google Scholar 

  • JSCE. (2010b). Guidelines for concrete No. 18. Standard specifications for concrete structures-2007, Dam Concrete. Tokyo: Japan Society of Civil Engineers: Tokyo.

    Google Scholar 

  • Juenger, M., Solt, S., & Hema, J. (2010). Effects of liquid nitrogen cooling on fresh concrete properties. ACI Materials Journal, 107.

    Google Scholar 

  • Kim, J. K., Kim, K. H., & Yang, J. K. (2001). Thermal analysis of hydration heat in concrete structures with pipe cooling system. Computers and Structures, 79(2), 163–171. http://dx.doi.org/10.1016/S00457949(00)00128-0.

    Article  MathSciNet  Google Scholar 

  • Klemczak, B., & Knoppik-Wróbel, A. (2011). Early-age thermal and shrinkage cracks in concrete structures—influence of curing conditions. Architecture–Civil Engineering–Environment, 4(4), 47–58.

    Google Scholar 

  • Klemczak, B., & Knoppik-Wróbel, A. (2012). Wpływ wybranych czynników materiałowo–technologicznych na temperatury twardnienia betonu w masywnej płycie fundamentowej. In Proceedings of “Dni Betonu” Wisła, Poland, (pp. 291–301).

    Google Scholar 

  • Klemczak, B., & Knoppik-Wróbel, A. (2015). Reinforced concrete tank walls and bridge abutments: Early-age behaviour, analytic approaches and numerical models. Engineering Structures, 84, 233–251.

    Article  Google Scholar 

  • Knoppik-Wróbel, A. (2015). Analysis of early-age thermal–shrinkage stresses in reinforced concrete walls. Ph.D. thesis, Silesian University of Technology, Gliwice, Poland.

    Google Scholar 

  • Korol, S. I. (1968). Technology of pipe refrigeration for the Krasnoyarsk hydroelectric station dam. Hydrotechnical Construction, 2, 961–966.

    Article  Google Scholar 

  • Koudelka, R. E., & Kelly, L. L. (1971). Cryogenic cooling of concrete, US Patent 3,583,172.

    Google Scholar 

  • Kurita, M., Goto, S., Minegishi, K., Negami, Y., & Kuwahara, T. (1990). In Precooling concrete using frozen sand, concrete international, (Vol. 12).

    Google Scholar 

  • Kovler, K. (1995). Shock of evaporative cooling of concrete in hot dry climates. Concrete International, 17(10), 65–69.

    Google Scholar 

  • Lawrence, A. M., Tia, M., & Bergin, M. (2014). Considerations for handling of mass concrete: control of internal restraint. ACI Materials Journal, 111(1), 3–12.

    Google Scholar 

  • Liu, X., Jiang, W., de Schutter, G., Yuan, Y., & Su, Q. (2014a). Early-age behaviour of precast concrete immersed tunnel based on degree of hydration concept. Structural Concrete, 15(1), 66–80.

    Article  Google Scholar 

  • Liu, X., Yuan, Y., & Su, Q. (2014b). Sensitivity analysis of the early-age cracking risk in an immersed tunnel. Structural Concrete, 15(2), 179–190.

    Article  Google Scholar 

  • Luff, B. A., & Bhasin, D. P. (1983). Cooling concrete with liquid nitrogen. Concrete Construction, 28, 391.

    Google Scholar 

  • Lunniss, R., & Baber, J. (2013). Immersed tunnels. London, UK: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Neville, A. (2011). Properties of concrete. Pearson Education Limited. ISBN: 978-0-273-75580-7.

    Google Scholar 

  • Oliveira, J. P. (2015). Betão em massa. Pré-refrigeração e pós refrigeração. Master Thesis in Civil Engineering. Universidade Nova de Lisboa. 104 pp. http://hdl.handle.net/10362/15558.

  • QCS. (2014). Qatar construction specifications. Qatar: Ministry of Environment.

    Google Scholar 

  • Qian, C., Gao, G., He, Z., & Li, R. (2015). Feasibility research of using phase change materials to reduce the inner temperature rise of mass concrete. Journal of Wuhan University of Technology-Materials Science Edition, 30(5), 989–994.

    Article  Google Scholar 

  • Riding, K. A., Poole, J. L., Schindler, A. K., Juenger, M. C. G., & Folliard, K. J. (2009). Effects of construction time and coarse aggregate on bridge deck cracking. ACI Materials Journal, 106(5), 448–454.

    Google Scholar 

  • Schrader, E., & Swiger, W. (1988). Concrete dam construction and foundation treatment. In R. Jansen (Ed.), Advanced dam engineering for design, construction, and rehabilitation (pp. 540–577). New York: Van Nostrand Reinhold.

    Chapter  Google Scholar 

  • Schleiss, A. (2011). Les barrages: du projet à la mise en service. Lausanne: Presses Polytechniques et Universitaires Romandes.

    Google Scholar 

  • Sfikas, I. P., Ingham, J., & Baber, J. (2016). Simulating thermal behaviour of concrete by FEA: state-of-the-art review. In Proceedings of the ICE: Construction Materials. http://dx.doi.org/10.1680/jcoma.15.00052.

  • Sfikas, I., Ingham, J., & Baber, J. (2017). Using finite-element analysis to assess the thermal behaviour of concrete structures. The Concrete Society: Concrete Magazine, February, 50–52.

    Google Scholar 

  • Tu, D., Lawrence, A., Tia, M., & Bergin, M. (2014). Determination of required insulation for preventing early-age cracking in mass concrete footings. Transportation Research Record: Journal of the Transportation Research Board, (2441), 91–97.

    Article  Google Scholar 

  • Vallarino, E. (1998). Tratado básico de presas, tomo II., Madrid: Colegio de Ingenie-ros de Caminos, Canales y Puertos.

    Google Scholar 

  • Vicroads. (2000). Technical Bulletin TB 42. Curing of Concrete. State Government of Victoria. ISBN: 0731129253.

    Google Scholar 

  • Witakowski, P. (2001). Technologia budowy konstrukcji masywnych z betonu. In Proceedings of the 13th Scientific Conference on Computer Methods in Design and Analysis of Hydrotechnic Structures, Korbielów, Poland.

    Google Scholar 

  • Yang, J., Hu, Y., Zuo, Z., Jin, F., & Li, Q. (2012). Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes. Applied Thermal Engineering, 35, 145–156, 3.

    Article  Google Scholar 

  • Zhu, B. (1999). Effect of cooling by water flowing in nonmetal pipes embedded in mass concrete. Journal of Construction Engineering and Management, 125, 61–68.

    Article  Google Scholar 

Download references

Acknowledgements

The kind contribution of the construction company SOMAGUE in sharing their experience in concert with temperature control in concrete is gratefully acknowledged. The sharing of information on behalf of the colleagues José Conceição and Shingo Asamoto is also acknowledged. This work was partially supported by: project POCI-01-0145-FEDER-007633 (ISISE), funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia. FCT and FEDER (COMPETE2020) are also acknowledged for the funding of the research project IntegraCrete PTDC/ECM-EST/1056/2014 (POCI-01-0145-FEDER-016841).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Azenha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azenha, M., Sfikas, I.P., Wyrzykowski, M., Kuperman, S., Knoppik, A. (2019). Temperature Control. In: Fairbairn, E., Azenha, M. (eds) Thermal Cracking of Massive Concrete Structures. RILEM State-of-the-Art Reports, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-76617-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76617-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76616-4

  • Online ISBN: 978-3-319-76617-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics