Skip to main content

Hydration and Heat Development

  • Chapter
  • First Online:
Thermal Cracking of Massive Concrete Structures

Abstract

The driving process of early-age cracking in massive element is the hydration and reactions of the binder that composes the concrete. Indeed, these reactions are highly exothermic and lead to heat generation in the structure. It is thus of primary importance to be able to characterise and predict the heat generation of binders in order to assess the early-age cracking risk of a concrete structure. The first section of this chapter presents the main physical phenomena responsible for this heat generation. It must be kept in mind that only the general phenomena of hydration are presented. The aim is only to present how the chemical reactions lead to heat development and water consumption (which are of interest for our purpose). The reactivity of binder is a large scientific subject, and more detailed review can be found on this subject in other RILEM TCs (for instance, 238-SCM). The second (and main) section of the chapter is dedicated to the modelling of the heat development induced by cement hydration. Several approaches are presented: affinity-based models (that can be easily implemented in finite element codes), microstructural models (even if they are less adapted to the massive structure modelling), data mining, or inverse analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade, W. P. (1997). Concretes: mass, structural, shotcrete and roller compacted—Tests and properties. Sao Paulo Editora PINI.

    Google Scholar 

  • Arrhenius, S. (1915). Quantitative laws in biological chemistry. London: G. Bell and Sons.

    Google Scholar 

  • Ballim, Y., & Graham, P. C. (2003). A maturity approach to the rate of heat evolution in concrete. Magazine of Concrete Research, 55(3), 249–256.

    Google Scholar 

  • Bažant, Z. P., & Najjar, L. J. (1972). Nonlinear water diffusion in nonsaturated concrete. Materials and Structures, 5(25), 3–20.

    Google Scholar 

  • Bensted, J. (1981). Hydration of Portland cement. In S. N. Ghosh (Ed.), Advances in cement technology (pp. 307–347). New York: Pergamon Press.

    Google Scholar 

  • Bentz, D. (1995). A three-dimensional cement hydration and microstructure program. I. Hydration rate, heat of hydration, and chemical shrinkage. Technical Report, NIST Building and Fire Research Laboratory, Gaithersburg, MD.

    Google Scholar 

  • Bentz, D. (1997). Three-dimensional computer simulation of Portland cement hydration and microstructure development. Journal of the American Ceramic Society, 80(1), 3–21.

    Google Scholar 

  • Bentz, D. (2000). CEMHYD3D: A three-dimensional cement hydration and microstructure development modeling package. Version 2.0., Technical report, NIST Building and Fire Research Laboratory, Gaithersburg, Maryland.

    Google Scholar 

  • Bentz, D. (2005). CEMHYD3D: A three-dimensional cement hydration and microstructure development modeling package. Version 3.0., Technical report, NIST Building and Fire Research Laboratory, Gaithersburg, Maryland.

    Google Scholar 

  • Bentz, D. P., Waller, V., & de Larrard, F. (1998). Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructural model. Cement and Concrete Research, 28(2), 285–297.

    Google Scholar 

  • Bentz, D. P., Garboczi, E., Haecker, C., & Jensen, O. (1999). Effect of cement particle size distribution on performance properties of Portland cement-based materials. Cement and Concrete Research, 29, 1663–1671.

    Google Scholar 

  • Biernacki, J. J., Williams, P. J., & Stutzman, P. E. (2001). Nonlinear analysis of temperature and moisture distributions in early-age concrete structures based on degree of hydration. ACI Material Journal, 98(4), 340–349.

    Google Scholar 

  • Bishnoi, S. (2008). Vector modelling of hydrating cement microstructure and kinetics. Ph.D. thesis, EPFL.

    Google Scholar 

  • Berodier, E., & Scrivener, K. (2014). Understanding the filler effect on the nucleation and growth of C-S-H. Journal of the American Ceramic Society, 92(12), 1–10.

    Google Scholar 

  • Bishnoi, S., & Scrivener, K. (2009a). Studying nucleation and growth kinetics of alite hydration using μic.pdf. Cement and Concrete Research, 39, 849–860.

    Google Scholar 

  • Bishnoi, S., & Scrivener, K. L. (2009b). µic: A new platform for modelling the hydration of cements. Cement and Concrete Research, 39, 266–274. https://doi.org/10.1016/j.cemconres.2008.12.002.

    Google Scholar 

  • Bofang, Z. (2003). Thermal stresses and temperature control of mass concrete. Beijing, People’s Republic of China: China Electric Power Press.

    Google Scholar 

  • Bogue, J. H. (1947). The chemistry of Portland cement. New York, USA: Reinhold Publishing Corporation.

    Google Scholar 

  • van Breugel, K. (1991). Simulation of hydration and formation of structure in hardening cement based materials. Ph.D. thesis, Delft University of Technology, Delft, Netherlands.

    Google Scholar 

  • Brouwers, H. J. H. (2004). The work of Powers and Brownyard revisited: Part 1. Cement and Concrete Research, 34, 1697–1716.

    Google Scholar 

  • Buffo-Lacarrière, L., Sellier, A., Escadeillas, G., & Turatsinze, A. (2007). Multiphasic finite element modelling of concrete hydration. Cement and Concrete Research, 37(2), 131–138.

    Google Scholar 

  • Bullard, J. W., Enjolras, E., George, W. L., Satterfield, S. G., & Terrill, J. E. (2010). A parallel reaction-transport model applied to cement hydration and microstructure development. Modelling and Simulation in Materials Science and Engineering, 18, 025007. https://doi.org/10.1088/0965-0393/18/2/025007.

    Google Scholar 

  • CEB-FIP fib Model Code 2010, 2013.

    Google Scholar 

  • Cervera, M., Oliver, J., & Prato, T. (1999). Thermo-chemo-mechanical model for concrete. I: Hydration and aging. Journal of Engineering Mechanics ASCE, 125(9), 1018–1027.

    Google Scholar 

  • Cervera, M., Faria, R., Olivier, J., & Prato, T. (2002). Numerical modelling of concrete curing, regarding hydration and temperature phenomena. Computers & Structures, 80, 1511–1521.

    Google Scholar 

  • Chamrova, R. (2010). Modelling and measurement of elastic properties of hydrating cement paste. Ph.D. thesis, EPFL.

    Google Scholar 

  • Chengju, G. (1989). Maturity of concrete: Method for predicting early-age strength. ACI Materials Journal, 86(4), 341–353.

    Google Scholar 

  • Dilnesa, B. Z., Lothenbach, B., Renaudin, G., Wichser, A., & Kulik, D. (2014). Synthesis and characterization of hydrogarnet Ca3(AlxFe1 − x)2(SiO4)y(OH)4(3 − y). Cement and Concrete Research, 59, 96–111. https://doi.org/10.1016/j.cemconres.2014.02.001.

    Google Scholar 

  • Do, Q. H. (2013). Modelling properties of cement paste from microstructure: Porosity, mechanical properties, creep and shrinkage. EPFL.

    Google Scholar 

  • Evsukof, A., Fairbairn, E. M. R., Faria, E. F., Silvoso, M. M., & Toledo Filho, R. D. (2006). Modeling adiabatic temperature rise during concrete hydration: A data mining approach. Computers & Structures, 84, 2351–2362.

    Google Scholar 

  • Fairbairn, E. M. R., Toledo Filho, R. D., Silvoso, M. M., Ribeiro, F. L. B., Evsukof, A., Ferreira, I. A., et al. (2006). A new comprehensive framework for the analysis of mass concrete: Thermo-chemo-mechanical, experimental, numerical and data modeling. In L. Berga, J. M. Buil, E. Bofill, J. C. De Cea, J. A. Garcia Perez, G. Mañueco, J. Polimon, A. Soriano, & J. Yagüe (Eds.), Dams and reservoirs, societies and environment in the 21st century (pp. 901–910). London: Taylor & Francis Group.

    Google Scholar 

  • Fairbairn, E. M. R., Silvoso, M. M., Ribeiro, F. L. B., & Toledo Filho, R. D. (2015). Determining the adiabatic temperature rise of concrete by inverse analysis: Case study of a spillway gate pier. European Journal of Environmental and Civil Engineering, pub. on-line, 1–17.

    Google Scholar 

  • Faria, E. F. (2004). Prediction of the exothermicity of concrete hydration by thermo-chemical and data modelling. M.Sc. thesis, COPPE/UFRJ, Civil Engineering Department (in Portuguese).

    Google Scholar 

  • Faria, R., Azenha, M., & Figueiras, J. A. (2006). Modelling of concrete at early ages: Application to an externally restrained slab. Cement and Concrete Composites, 28(6), 572–585.

    Google Scholar 

  • Fernandez-Jimenez, A., & Puertas, F. (1997). Alkali-activated slag cements: Kinetic studies. Cement and Concrete Research, 27, 359–368.

    Google Scholar 

  • Fonseca, D. (2008). Predicting concrete adiabatic temperature rise through models based on data. M.Sc. thesis, COPPE/UFRJ, Civil Engineering Department (in Portuguese).

    Google Scholar 

  • Gawin, D., Pesavento, F., & Schrefler, B. A. (2006). Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. International Journal for Numerical Methods in Engineering, 67(3), 299–331.

    MATH  Google Scholar 

  • Garboczi, E. J., & Bentz, D. P. (2001). The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model. Cement and Concrete Research, 31(10), 1501–1514.

    Google Scholar 

  • Gartner, E., Young, J., Damidot, D., & Jawed, I. (2002). Hydration of Portland cement. In Structure and performance of cements (Vol. 13), 978-0.

    Google Scholar 

  • Hansen, P. F., & Pedersen, J. (1977). Maturity computer for controlled curing and hardening of concrete. Nordisk Betong, 21, 19–34.

    Google Scholar 

  • JCI Japanese Concrete Institute. (2008). Guidelines for control of cracking of mass concrete.

    Google Scholar 

  • Jonasson, J.-E. (1994). Modelling of temperature, moisture and stress in young concrete. Ph.D. thesis, Luleå University of Technology, Luleå, Sweden.

    Google Scholar 

  • Justnes, H. (1992). Hydraulic binders based on condensed silica fume and slake lime. In 9th International Congress on the Chemistry of Cement, New Delhi (Vol. III, pp. 284–290).

    Google Scholar 

  • Kanit, T., Forest, S., Galliet, I., Mounoury, V., & Jeulin, D. (2003). Determination of the size of the representative volume element for random composites: Statistical and numerical approach. International Journal of Solids and Structures, 40, 3647–3679.

    MATH  Google Scholar 

  • Karpov, I. K., Chudnenko, K. V., & Kulik, D. A. (1997). Modeling chemical mass transfer in geochemical processes; Thermodynamic relations, conditions of equilibria and numerical algorithms. American Journal of Science, 297, 767–806. https://doi.org/10.2475/ajs.297.8.767.

    Google Scholar 

  • Kiernożycki, W. (2003). Betonowe konstrukcje masywne (Massive concrete structures). Cracow, Poland: Polski Cement.

    Google Scholar 

  • Kishi, T., & Maekawa, K. (1994). Thermal and mechanical modelling of young concrete based on hydration process of multi-component cement materials. In Thermal cracking in concrete at early age, Rilem Proceeding 25 (pp. 11–19). ISBN 0-419-18710-3.

    Google Scholar 

  • Klemczak, B., & Batog, M. (2015). Heat of hydration of low-clinker cements. Part 1, Semi-adiabatic and isothermal tests at different temperature. Journal of Thermal Analysis and Calorimetry.

    Google Scholar 

  • Klemczak, B., & Knoppik-Wróbel, A. (2014). Analysis of early-age thermal and shrinkage stresses in reinforced concrete walls. ACI Structural Journal, 111(2), 313–322.

    Google Scholar 

  • Knoppik-Wróbel, A. (2012). Cracking risk in early-age RC walls. In fib Ph.D. Symposium, Karlsruhe, Germany.

    Google Scholar 

  • Knudsen, T. (1984). The dispersion model for hydration of Portland cement: I. General concepts. Cement and Concrete Research, 14, 622–630.

    Google Scholar 

  • Kolani, B., Buffo-Lacarrière, L., Sellier, A., Escadeillas, G., Boutillon, L., & Linger, L. (2012). Hydration of slag blended cements. Cement & Concrete Composites, 34(9), 1009–1018.

    Google Scholar 

  • Kumar, A., Bishnoi, S., & Scrivener, K. L. (2012). Modelling early age hydration kinetics of alite. Cement and Concrete Research, 42, 903–918. https://doi.org/10.1016/j.cemconres.2012.03.003.

    Google Scholar 

  • Lackner, R., & Mang, H. A. (2004). Chemoplastic material model for the simulation of early-age cracking: From the constitutive law to numerical analyses of massive concrete structures. Cement & Concrete Composites, 26, 551–562.

    Google Scholar 

  • Lea, F. M. (1970). The chemistry of cement and concrete (p. 727). London: Edward Arnold Ltd. ISBN 7131-2277-3.

    Google Scholar 

  • Leal da Silva, W. R., & Šmilauer, V. (2015). Fuzzy affinity hydration model. Journal of Intelligent and Fuzzy Systems., 28(1), 127–139.

    Google Scholar 

  • Leal da Silva, W. R., Šmilauer, V., & Štemberk, P. (2015). Upscaling semi-adiabatic measurements for simulating temperature evolution of mass concrete structures. Materials and Structures, 48(4), 1031–1041.

    Google Scholar 

  • Lothenbach, B., Matschei, T., Möschner, G., & Glasser, F. P. (2008). Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cement and Concrete Research, 38, 1–18. https://doi.org/10.1016/j.cemconres.2007.08.017.

    Google Scholar 

  • Maekawa, K., Chaube, R. P., & Kishi, T. (1999). Modeling of concrete performance. London: E & FN Spon.

    Google Scholar 

  • Maekawa, K., Ishida, T., & Kishi, T. (2008), Multi-scale modeling of structural concrete, Taylor and Francis.

    Google Scholar 

  • Mills, R. H. (1966). Factors influencing cessation of hydration in water-cured cement pastes. Special report No. 90. Washington, D.C.: Highway Research Board.

    Google Scholar 

  • Mounanga, P. (2003). Comportement des matrices cimentaires au jeune âge: relation entre évolution chimique et déformations chimique et endogène. XXIEMES Rencontres Universitaires de Génie Civil.

    Google Scholar 

  • Navi, P., & Pignat, C. (1996). Simulation of cement hydration and the connectivity of the capillary pore space. Advanced Cement Based Materials, 4, 58–67.

    Google Scholar 

  • Neville, A. (1997). M. properties of concrete. Hoboken, NJ: Wiley.

    Google Scholar 

  • Oh, B. H., & Cha, S. W. (2003). Nonlinear analysis of temperature and moisture distributions in early-age concrete structures based on degree of hydration. ACI Material Journal, 100(5), 361–370.

    Google Scholar 

  • Pane, I., & Hansen, W. (2002). Concrete hydration and mechanical properties under nonisothermal conditions. ACI Materials Journal, 99(6), 422–534.

    Google Scholar 

  • Poole, J. L. (2007). Modeling temperature sensitivity and heat evolution of concrete. Ph.D. thesis, University of Texas at Austin, Austin, USA.

    Google Scholar 

  • Powers, T. C. (1964). The physical structure of Portland cement paste, the chemistry of cement (H. F. Taylor Ed.) (pp. 391–416). Academic Press.

    Google Scholar 

  • Powers, T. C., & Brownyard, T. L. (1947). Studies of the physical properties of hardened Portland cement paste, Part 9. ACI Journal, 18(8).

    Google Scholar 

  • Princigallo, A., Lura, P., van Breugel, K., & Levita, G. (2003). Early development of properties in a cement paste: A numerical and experimental study. Cement and Concrete Research, 33(7), 1013–1020.

    Google Scholar 

  • Rastrup, E. (1954). Heat of hydration in concrete. Magazine of Concrete Research, 6(17), 79–92.

    Google Scholar 

  • Reinhardt, H., Blaauwendraad, J., & Jongedijk, J. (1982). Temperature development in concrete structures taking account of state dependent properties. In Proceedings of RILEM International Conference on Concrete at Early Ages, Paris, France (pp. 211–218).

    Google Scholar 

  • Richardson, I. G. (1999). The nature of C-S-H in hardened cements. Cement and Concrete Research, 29, 1131–1147.

    Google Scholar 

  • Richardson, I. G. (2000). The nature of the hydration products in hardened cement pastes. Cement & Concrete Composites, 22, 97–113.

    Google Scholar 

  • Riding, K. A., Poole, J. L., Folliard, K. J., Juenger, M. C. G., & Schindler, A. K. (2011). New method for estimating apparent activation energy of cementitious systems. ACI Materials Journal, 108(5), 550–557.

    Google Scholar 

  • RILEM TC 119-TCE. (1997). Avoidance of thermal cracking in concrete at early ages. Materials and Structures, 30, 451–464.

    Google Scholar 

  • Scherer, G. W., Zhang, J., & Thomas, J. J. (2012). Nucleation and growth models for hydration of cement. Cement and Concrete Research, 982–993.

    Google Scholar 

  • Schindler, A. K. (2002). Concrete hydration, temperature development, and setting at early ages. Ph.D. thesis, University of Texas at Austin, Austin, USA.

    Google Scholar 

  • Schindler, A. K. (2004). Effect of temperature on hydration of cementitious materials. ACI Materials Journal, 101(1), 72–81.

    Google Scholar 

  • Schindler, A. K., & Folliard, K. J. (2005). Heat of hydration models for cementitious materials. ACI Materials Journal, 102(1), 24–33.

    Google Scholar 

  • de Schutter, G. (1999). Hydration and temperature development of concrete made with blast-furnace slag cement. Cement and Concrete Research, 29(1), 143–149.

    Google Scholar 

  • de Schutter, G., & Taerwe, L. (1995). General hydration model for Portland cement and blast furnace slag cement. Cement and Concrete Research, 25(3), 593–604.

    Google Scholar 

  • de Schutter, G., & Vuylsteke, M. (2004). Minimisation of early age thermal cracking in a J-shaped non-reinforced massive concrete quay wall. Engineering Structures, 26, 801–808.

    Google Scholar 

  • Scrivener, K. L., Juilland, P., & Monteiro, P. J. M. (2015). Advances in understanding hydration of Portland cement. In Cement and Concrete Research, Keynote Papers from 14th International Congress on the Chemistry of Cement (ICCC 2015) (Vol. 78, Part A, pp. 38–56). https://doi.org/10.1016/j.cemconres.2015.05.025.

    Google Scholar 

  • Šmilauer, V. (2014). Multiscale hierarchical modeling of hydrating concrete. Saxe-Coburg Publications.

    Google Scholar 

  • Šmilauer, V., & Krejčí, T. (2009). Multiscale model for temperature distribution in hydrating concrete. International Journal for Multiscale Computational Engineering, 7(2), 135–151.

    Google Scholar 

  • Taylor, H. F. W. (1990). Cement chemistry. New York: Academic Press.

    Google Scholar 

  • Tennis, P. D., & Jennings, H. M. (2000). A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cement and Concrete Research, 30, 855–863.

    Google Scholar 

  • Thomas, J. J., Biernacki, J. J., Bullard, J. W., Bishnoi, S., Dolado, J. S., Scherer, G. W., et al. (2011). Modeling and simulation of cement hydration kinetics and microstructure development. Cement and Concrete Research, 41, 1257–1278.

    Google Scholar 

  • Ulm, F.-J., & Coussy, O. (1998). Couplings in early-age concrete: From material modeling to structural design. International Journal of Solids and Structures, 35(31–32), 4295–4311.

    MATH  Google Scholar 

  • Waller, V. (1999). Relations entre composition des bétons, exothermie en cours de prise et résistance en compression. Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées, Paris.

    Google Scholar 

  • Wang, C., & Dilger, W. H. (1994). Prediction of temperature distribution in hardening concrete. In Proceedings of the International RILEM Conference on Thermal Cracking in Concrete at Early Ages, London, UK (pp. 21–28).

    Google Scholar 

  • Xiang, Y., Zhang, Z., He, S., & Dong, G. (2005). Thermal–mechanical analysis of a newly cast concrete wall of a subway structure. Tunnelling and Underground Space Technology, 20, 442–451.

    Google Scholar 

  • Yuan, Y., & Wan, Z. L. (2002). Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cement and Concrete Research, 32, 1053–1059.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie Lacarrière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lacarrière, L. et al. (2019). Hydration and Heat Development. In: Fairbairn, E., Azenha, M. (eds) Thermal Cracking of Massive Concrete Structures. RILEM State-of-the-Art Reports, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-76617-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76617-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76616-4

  • Online ISBN: 978-3-319-76617-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics