Skip to main content

Abstract

Angiogenesis is a complex multiscale process by which diffusing vessel endothelial growth factors induce sprouting of blood vessels that carry oxygen and nutrients to hypoxic tissue. There is strong coupling between the kinetic parameters of the relevant branching—growth—anastomosis stochastic processes of the capillary network, at the microscale, and the family of interacting underlying biochemical fields, at the macroscale. A hybrid mesoscale tip cell model involves stochastic branching, fusion (anastomosis) and extension of active vessel tip cells with reaction-diffusion growth factor fields. Anastomosis prevents indefinite proliferation of active vessel tips, precludes a self-averaging stochastic process and ensures that a deterministic description of the density of active tips holds only for ensemble averages over replicas of the stochastic process. Evolution of active tips from a primary vessel to a tumor adopts the form of an advancing soliton that can be characterized by ordinary differential equations for its position, velocity and a size parameter. A short review of other angiogenesis models and possible implications of our work is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.F. Carmeliet, Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005)

    Article  Google Scholar 

  2. P. Carmeliet, R.K. Jain, Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011)

    Article  Google Scholar 

  3. R.F. Gariano, T.W. Gardner, Retinal angiogenesis in development and disease. Nature 438, 960–966 (2005)

    Article  Google Scholar 

  4. M. Fruttiger, Development of the retinal vasculature. Angiogenesis 10, 77–88 (2007)

    Article  Google Scholar 

  5. P. Carmeliet, M. Tessier-Lavigne, Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005)

    Article  Google Scholar 

  6. J. Folkman, Tumor angiogenesis: therapeutic implications. New Engl. J. Med. 285(21), 1182–1186 (1971)

    Article  Google Scholar 

  7. J. Folkman, Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006)

    Article  Google Scholar 

  8. T. Heck, M.M. Vaeyens, H. Van Oosterwyck, Computational models of sprouting angiogenesis and cell migration: Towards multiscale mechanochemical models of angiogenesis. Math. Model. Nat. Phen. 10, 108–141 (2015)

    Article  MathSciNet  Google Scholar 

  9. L.L. Bonilla, V. Capasso, M. Alvaro, M. Carretero, Hybrid modeling of tumor-induced angiogenesis. Phys. Rev. E 90, 062716 (2014)

    Article  Google Scholar 

  10. F. Terragni, M. Carretero, V. Capasso, L.L. Bonilla, Stochastic model of tumor-induced angiogenesis: ensemble averages and deterministic equations. Phys. Rev. E 93, 022413 (2016)

    Article  MathSciNet  Google Scholar 

  11. L.L. Bonilla, M. Carretero, F. Terragni, B. Birnir, Soliton driven angiogenesis. Sci. Rep. 6, 31296 (2016)

    Article  Google Scholar 

  12. L.L. Bonilla, M. Carretero, F. Terragni, Solitonlike attractor for blood vessel tip density in angiogenesis. Phys. Rev. E 94, 062415 (2016)

    Article  Google Scholar 

  13. A.R.A. Anderson, M.A.J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–900 (1998)

    Article  Google Scholar 

  14. M.J. Plank, B.D. Sleeman, Lattice and Non-Lattice Models of Tumour Angiogenesis. Bull. Math. Biol. 66, 1785–1819 (2004)

    Article  MathSciNet  Google Scholar 

  15. C.L. Stokes, D.A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theoret. Biol. 152, 377–403 (1991)

    Article  Google Scholar 

  16. C.L. Stokes, D.A. Lauffenburger, S.K. Williams, Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci. 99, 419–430 (1991)

    Google Scholar 

  17. V. Capasso, D. Morale, Stochastic modelling of tumour-induced angiogenesis. J. Math. Biol. 58, 219–233 (2009)

    Article  MathSciNet  Google Scholar 

  18. S. Sun, M.F. Wheeler, M. Obeyesekere, C.W. Patrick Jr., Multiscale angiogenesis modeling using mixed finite element methods. Multiscale Mod. Simul. 4(4), 1137–1167 (2005)

    Article  MathSciNet  Google Scholar 

  19. L.L. Bonilla, V. Capasso, M. Alvaro, M. Carretero, F. Terragni, On the mathematical modelling of tumour induced driven angiogenesis. Math. Biosci. Eng. 14, 45–66 (2017)

    Article  MathSciNet  Google Scholar 

  20. L.L. Bonilla, M. Carretero, F. Terragni, Ensemble averages, soliton dynamics and influence of haptotaxis in a model of tumor-induced angiogenesis. Entropy 19, 209 (2017)

    Article  Google Scholar 

  21. A. Stéphanou, S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comput. Model. 44, 96–123 (2006)

    Article  MathSciNet  Google Scholar 

  22. C.W. Gardiner, Stochastic methods, in A handbook for the natural and social sciences, 4th edn. (Springer, Berlin, 2010)

    Google Scholar 

  23. A. Carpio, G. Duro, Well posedness of an angiogenesis related integrodifferential diffusion model. Appl. Math. Model. 40, 5560–5575 (2016)

    Article  MathSciNet  Google Scholar 

  24. A. Carpio, G. Duro, M. Negreanu, Constructing solutions for a kinetic model of angiogenesis in annular domains. Appl. Math. Model. 45, 303–322 (2017)

    Article  MathSciNet  Google Scholar 

  25. H.A. Levine, S. Pamuk, B.D. Sleeman, M. Nilsen-Hamilton, Mathematical modeling of the capillary formation and development in tumor angiogenesis: Penetration into the stroma. Bull. Math. Biol. 63, 801–863 (2001)

    Article  Google Scholar 

  26. N.A. Hill, D.P. Häder, A biased random walk model for the trajectories of swimming micro-organisms. J. Theor. Biol. 186, 503–526 (1997)

    Article  Google Scholar 

  27. A.L. Bauer, T.L. Jackson, Y. Jiang, A Cell-Based Model Exhibiting Branching and Anastomosis during Tumor-Induced Angiogenesis. Biophys. J. 92, 3105–3121 (2007)

    Article  Google Scholar 

  28. R.F.M. Van Oers, E.G. Rens, D.J. La Valley, C.A. Reinhart-King, R.M.H. Merks, Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput. Biol. 10(8), el003774 (2014)

    Google Scholar 

  29. K. Bentley, C.A. Franco, A. Philippides, R. Blanco, M. Dierkes, V. Gebala, F. Stanchi, M. Jones, I.M. Aspalter, G. Cagna, S. Weström, L. Claesson-Welsh, D. Vestweber, H. Gerhardt, The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell Biol. 16(4), 309–321 (2014)

    Article  Google Scholar 

  30. N. Alber, N. Chen, P.M. Lushnikov, S.A. Newman, Continuous macroscopic limit of a discrete stochastic model for interaction of living cells. Phys. Rev. Lett. 99, 168102 (2007)

    Article  Google Scholar 

  31. A.R. Pries, T.W. Secomb, P. Gaehtgens, Structural adaptation and stability of microvascular netwoks: theory and simulation. Am. J. Physiol. Heart Circ. Physiol. 275(44), H349–H360 (1998)

    Article  Google Scholar 

  32. A.R. Pries, T.W. Secomb, Control of blood vessel structure: insights from theoretical models. Am. J. Physiol. Heart Circ. Physiol. 288(3), H1010–H1015 (2005)

    Article  Google Scholar 

  33. S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241, 564–589 (2006)

    Article  MathSciNet  Google Scholar 

  34. H. Ronellenfitsch, E. Katifori, Global optimization, local adaptation, and the role of growth in distribution networks. Phys. Rev. Lett. 117, 138301 (2016)

    Article  Google Scholar 

  35. H. Ronellenfitsch, J. Lasser, D.C. Daly, E. Katifori, Topological phenotypes constitute a new dimension in the phenotypic space of leaf venation networks. PLOS Comput. Biol. 11(12), e1004680 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank V. Capasso and D. Morale from the Department of Mathematics of UniversitĂ  degli Studi di Milano, Milan, Italy, and B. Birnir from the Department of Mathematics of University of California at Santa Barbara, USA, for fruitful discussions and contributions. We also thank A. Lasanta from Universidad Carlos III de Madrid for useful comments on the manuscript. This work has been supported by the Ministerio de EconomĂ­a y Competitividad grants MTM2014-56948-C2-2-P and MTM2017-84446-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis L. Bonilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonilla, L.L., Carretero, M., Terragni, F. (2018). Stochastic Models of Tumor Induced Angiogenesis. In: Bonilla, L., Kaxiras, E., Melnik, R. (eds) Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications. BIRS-16w5069 2016. Springer Proceedings in Mathematics & Statistics, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-76599-0_6

Download citation

Publish with us

Policies and ethics