Skip to main content

Continuum Model for Coupled Acousto-Optical Phonons in Piezoelectric Materials

  • Conference paper
  • First Online:
Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications (BIRS-16w5069 2016)

Abstract

A 3D continuum model is used to find optical and acoustic phonon fields in zincblende GaAs. We start out using continuum elastic differential equations and the Maxwell-Poisson equation to describe dynamic lattice strain and internal strain effects accounting for the full crystal symmetry of zincblende GaAs. The analytical model is derived in detail in a first-principles analysis. Our results reveal that for a slab of crystal GaAs grown along the [001] direction the mechanical displacements along the x and z directions \(u_x, u_z\) couple while the mechanical displacement \(u_y\) couple solely to the electric field E by virtue of piezoelectricity. As a consequence optical and acoustic phonon fields are inherently coupled due to piezoelectricity and acoustic and optical phonon modes must be found by solving simultaneously the full elastic solid and electric governing equations and the relevant (elastic and electric) boundary conditions. We then derive phonon dispersion curves for a GaAs slab and compare cases with and without anisotropy and piezoelectricity and show that neglecting the latter in the description of both acoustic and optical modes of GaAs, as is done in many classical descriptions, is a too crude approximation. We finally discuss two novel results: (i) confined coupled acousto-optical \(u_y-u_\phi \) modes cannot exist in piezoelectric media except at certain discrete \(q_x\) wavenumber values, and (ii) piezoelectricity prohibits the existence of optical phonon fields at the LO phonon frequency. The model presented is general and can be applied to other materials and other crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.H. Quilter, A.J. Brash, F. Liu, M. Glässl, A.M. Barth, V.M. Axt, A.J. Ramsay, M.S. Skolnick, A.M. Fox, Phys. Rev. Lett. 114, 137401 (2015)

    Article  Google Scholar 

  2. A.E. Siegman, Lasers (University Science Books, Oxford, 1986)

    Google Scholar 

  3. M. Glässl, A.M. Barth, V.M. Axt, Phys. Rev. Lett. 110, 147401 (2013)

    Article  Google Scholar 

  4. M.J. Gullans, Y.-Y. Liu, J. Stehlik, J.R. Petta, J.M. Taylor, Phys. Rev. Lett. 114, 196802 (2015)

    Article  Google Scholar 

  5. M. Sargent, M. Scully, W. Lamb, Laser Physics (Perseus Books Group, New York, 1978)

    Google Scholar 

  6. Y.Y. Liu, J. Stehlik, C. Eichler, M.J. Gullans, J.M. Taylor, J.R. Petta, Science 347, 285 (2015)

    Article  Google Scholar 

  7. P. Kaer, T.R. Nielsen, P. Lodahl, A.-P. Jauho, J. Mork, Phys. Rev. Lett. 104, 157401 (2010)

    Google Scholar 

  8. A. Aufféves, J.M. Gerard, J.P. Poizat, Phys. Rev. A 79, 053838 (2009)

    Article  Google Scholar 

  9. T. Yoshie, A. Scherer, J. Heindrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Nature (London) 432, 200 (2004)

    Article  Google Scholar 

  10. H.J. Carmichael, R.J. Brecha, M.G. Raizen, H.J. Kimble, P.R. Rice, Phys. Rev. A 40, 5516 (1989)

    Article  Google Scholar 

  11. E. Knill, R. Laflamme, G.J. Milburn, Nature 409, 46 (2001)

    Article  Google Scholar 

  12. M.W. Graham, S.-F. Shi, D.C. Ralph, J. Park, P.L. McEuen, Nat. Phys. 9, 103 (2009)

    Article  Google Scholar 

  13. F.D. Natterer, Y. Zhao, J. Wyrick, Y.-H. Chan, W.-Y. Ruan, M.-Y. Chou, K. Watanabe, T. Taniguchi, N.B. Zhitenev, J.A. Stroscio, Phys. Rev. Lett. 114, 245502 (2015)

    Article  Google Scholar 

  14. D.N. Basov, M.M. Fogler, A. Lanzara, F. Wang, Y. Zhang, Rev. Mod. Phys. 86, 959 (2014)

    Article  Google Scholar 

  15. B.A. Auld, Acoustic Fields and Waves in Solids, Part 1 (Krieger Publ. Co. 1990)

    Google Scholar 

  16. M. Willatzen, Z.L. Wang, Phys. Rev. B 92, 224101 (2015)

    Article  Google Scholar 

  17. J.J. Licari, R. Evrard, Phys. Rev. B 15, 2254 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

This research work partly emerged from a research stay at the Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences (BINN). MW gratefully acknowledges financial support from BINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Willatzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Willatzen, M., Lin Wang, Z. (2018). Continuum Model for Coupled Acousto-Optical Phonons in Piezoelectric Materials. In: Bonilla, L., Kaxiras, E., Melnik, R. (eds) Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications. BIRS-16w5069 2016. Springer Proceedings in Mathematics & Statistics, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-76599-0_5

Download citation

Publish with us

Policies and ethics