Skip to main content

Classical Density-Functional Theory Studies of Fluid Adsorption on Nanopatterned Planar Surfaces

  • Conference paper
  • First Online:
Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications (BIRS-16w5069 2016)

Abstract

This contribution is based on our talk at the BIRS Workshop on “Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications”. Our aim here is to summarize and bring together recent advances in wetting of nanostructured surfaces, using classical density-functional theory (DFT). Classical DFT is an ab initio theoretical-computational framework with a firm foundation in statistical physics allowing us to systematically account for the fluid spatial inhomogeneity, as well as for the non-localities of intermolecular fluid-fluid and fluid-substrate interactions. The cornerstone of classical DFT, is to express the grand free energy of the system as a functional of its one-body density, thus generating a hierarchy of N-body correlation functions. Unconstrained minimization of a properly approximated free-energy functional with respect to the one-body density then yields the basic DFT equation. And since most macroscopic quantities of interest can often be cast as averages over a one-body distribution, this equation provides a very useful and accessible computational tool. Indeed, there has been a rapid growth of classical DFT applications across a broad variety of fields, including phase transitions in solutions of macromolecules, interfacial phenomena, and even nucleation. Here we attempt to give a taste of what simple equilibrium DFT models look like, and what they can and cannot capture, as far as wetting on chemically heterogeneous substrates is concerned. We review recent progress in the understanding of planar prewetting and interface unbending on such substrates and compute substrate-fluid interfaces and wetting isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Xu, G. Vereecke, C. Chen, G. Pourtois, S. Armini, N. Verellen, W.-K. Tsai, D.-W. Kim, E. Lee, C.-Y. Lin, P.V. Dorpe, H. Struyf, F. Holsteyns, V. Moshchalkov, J. Indekeu, S.D. Gendt, Capturing wetting states in nanopatterned silicon. ACS Nano 8, 885 (2014)

    Article  Google Scholar 

  2. S. Herminghaus, M. Brinkman, R. Seeman, Wetting and dewetting of complex surface geometries. Annu. Rev. Mater. Res. 38, 101 (2008)

    Article  Google Scholar 

  3. D. Lohse, X. Zhang, Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87, 981 (2015)

    Article  MathSciNet  Google Scholar 

  4. A. Calvo, B. Yameen, F.J. Williams, G.J.A.A. Soler-Illia, O. Azzaroni, Mesoporous films and polymer brushes helping each other to modulate ionic transport in nanoconfined environments. An interesting example of synergism in functional hybrid assemblies. J. Am. Chem. Soc. 131, 10866 (2009)

    Article  Google Scholar 

  5. M.G. Knepley, D.A. Karpeev, S. Davidovits, R.S. Eisenberg, D. Gillespie, An efficient algorithm for classical density functional theory in three dimensions: ionic solutions. J. Chem. Phys. 132, 124101 (2010)

    Article  Google Scholar 

  6. J. Bleibel, A. Dominguez, M. Oettel, S. Dietrich, Capillary attraction induced collapse of colloidal monolayers at fluid interfaces. Soft Matter 10, 4091 (2014)

    Article  Google Scholar 

  7. P.E. Theodorakis, A. Chremos, Morphologies of bottle-brush block copolymers. ACS Nano Lett. 3, 1096 (2014)

    Google Scholar 

  8. A. Checco, B.M. Ocko, M. Tasinkevych, S. Dietrich, Stability of thin wetting films on chemically nanostructured surfaces. Phys. Rev. Lett. 109, 166101 (2012)

    Google Scholar 

  9. Z. Gou, W. Liu, Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci. 172, 1103 (2007)

    Google Scholar 

  10. T.M. Squires, S. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)

    Article  Google Scholar 

  11. M. Rauscher, S. Dietrich, Wetting phenomena in nanofluidics. Annu. Rev. Mater. Res. 38, 143 (2008)

    Article  Google Scholar 

  12. K. Binder, Modelling of wetting in restricted geometries. Annu. Rev. Mater. Res. 38, 123 (2008)

    Article  MathSciNet  Google Scholar 

  13. H. Craighead, Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387 (2006)

    Article  Google Scholar 

  14. K.W. Schwarz, J. Tersoff, From droplets to nanowires: dynamics of vapor-liquid-solid growth. Phys. Rev. Lett. 102 (2009)

    Google Scholar 

  15. R.E. Algra, M.A. Verheijen, L.-F. Feiner, G.G.W. Immink, W.J.P. van Enckevort, E. Vlieg, E.P.A.M. Bakkers, The role of surface energies and chemical potential during nanowire growth. Nano Lett. 11, 1259 (2011)

    Article  Google Scholar 

  16. C. Rascón, A.O. Parry, Geometry-dominated fluid adsorption on sculpted solid substrates. Nature 407, 986 (2000)

    Article  Google Scholar 

  17. O. Gang, K.J. Alvine, M. Fukuto, P.S. Pershan, C.T. Black, B.M. Ocko, Liquids on topologically nanopatterned surfaces. Phys. Rev. Lett. 95, 217801 (2005)

    Google Scholar 

  18. R. Seeman, M. Brinkman, E.J. Kramer, F.F. Lange, R. Lipowsky, Wetting morphologies at microstructured surfaces. Proc. Natl. Acad. Sci. USA 102, 1848 (2005)

    Google Scholar 

  19. M. Nosonvsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 14, 270 (2009)

    Google Scholar 

  20. Z. Wang, J. Wei, P. Morse, J.G. Dash, O.E. Vilches, D.H. Cobden, Phase transitions of adsrobed atoms on the surface of a carbon nanotube. Science 327, 552 (2010)

    Article  Google Scholar 

  21. W.F. Saam, Wetting, capillary condensation and more. J. Low Temp. Phys. 157, 77 (2009)

    Article  Google Scholar 

  22. R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143 (1979)

    Article  Google Scholar 

  23. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  24. N.D. Mermin, Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965)

    Article  MathSciNet  Google Scholar 

  25. H. Lowen, Density functional theory: from statics to dynamics. J. Phys. Condens. Matter 15, V1 (2003)

    Article  Google Scholar 

  26. J.F. Lutsko, Recent developments in classical density functional theory. Adv. Chem. Phys. Wiley (2010), p. 1

    Google Scholar 

  27. J. Landers, J.Y. Gor, A.V. Neimark, Density functional theory methods for characterization of porous materials. Colloid Surf. A 437, 3 (2013)

    Google Scholar 

  28. J. Wu, Density functional theory for chemical engineering: from capillarity to soft materials. AIChE J. 52, 1169 (2006)

    Article  Google Scholar 

  29. L.J.D. Frink, A.G. Salinger, M.P. Sears, J.D. Weinhold, A.L. Frischknecht, Numerical challenges in the application of density functional theory to biology and nanotechnology. J. Phys. Condens. Matter 14, 12167 (2002)

    Google Scholar 

  30. R. Evans, Fundamentals of inhomogeneous fluids, in Chapter Density Functionals in the Theory of Nonuniform Fluids (Dekker, New York, 1992), p. 85

    Google Scholar 

  31. J.F. Lutsko, M.A. Durán-Olivencia, A two-parameter extension of classical nucleation theory. J. Phys. Condens. Matter 27, 235101 (2015)

    Google Scholar 

  32. J.F. Lutsko, M.A. Durán-Olivencia, Classical nucleation theory from a dynamical approach to nucleation. J. Chem. Phys. 138, 244908 (2013)

    Article  Google Scholar 

  33. J.A. Barker, D. Henderson, Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys. 47, 4714 (1967)

    Article  Google Scholar 

  34. N.F. Carnahan, K.E. Starling, Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635 (1969)

    Article  Google Scholar 

  35. P. Yatsyshin, N. Savva, S. Kalliadasis, Density functional study of condensation in capped capillaries. J. Phys. Condens. Matter 27, 275104 (2015)

    Google Scholar 

  36. A. Mulero, Theory and Simulation of Hard-Sphere Fluids and Related Systems. Lecture Notes in Physics, vol. 753 (Springer, Berlin, Heidelberg, 2008)

    Google Scholar 

  37. D.E. Sullivan, M.M. Telo da Gama, Wetting transitions and multilayer adsorption at fluid interfaces, in Fluid Interfacial Phenomena, ed. by C.A. Croxton (Wiley, New York, 1986), p. 45

    Google Scholar 

  38. P. Yatsyshin, N. Savva, S. Kalliadasis, Wetting of prototypical one- and two-dimensional systems: thermodynamics and density functional theory. J. Chem. Phys. 142, 034708 (2015)

    Article  Google Scholar 

  39. P. Yatsyshin, N. Savva, S. Kalliadasis, Geometry-induced phase transition in fluids: capillary prewetting. Phys. Rev. E 87, 020402(R) (2013)

    Google Scholar 

  40. P. Tarazona, R. Evans, A simple density functional theory for inhomogeneous liquids. Wetting by gas at a solid-liquid interface. Mol. Phys. 52, 847 (1984)

    Article  Google Scholar 

  41. P. Tarazona, J.A. Cuesta, Y. Martinez-Raton, Density functional theories of hard particle systems, in Theory and Simulations of Hard-Sphere Fluids and Related Systems, ed. by A. Mulero. Lecture Notes in Physics, vol. 753 (Springer, Berlin, Heidelberg, 2008), p. 251

    Google Scholar 

  42. R. Roth, Fundamental measure theory for hard-sphere mixtures: a review. J. Phys. Condens. Matter 22, 063102 (2010)

    Google Scholar 

  43. P. Yatsyshin, N. Savva, S. Kalliadasis, Spectral methods for the equations of classical density-functional theory: relaxation dynamics of microscopic films. J. Chem. Phys. 136, 124113 (2012)

    Article  Google Scholar 

  44. A. Archer, R. Evans, Dynamical density functional theory and its application to spinodal decomposition. J. Chem. Phys. 121(9), 4246–4254 (2004)

    Article  Google Scholar 

  45. P. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977)

    Article  Google Scholar 

  46. U.M.B. Marconi, P. Tarazona, Nonequilibrium inertial dynamics of colloidal systems. J. Chem. Phys. 124(16), 164901–164911 (2006)

    Article  Google Scholar 

  47. U.M.B. Marconi, P. Tarazona, Dynamic density functional theory of fluids. J. Phys. Condens. Matter 12, A413–A418 (2000)

    Google Scholar 

  48. U.M.B. Marconi, P. Tarazona, Dynamical density functional theory of fluids. J. Chem. Phys. 110, 8032–8044 (1999)

    Article  Google Scholar 

  49. M.A. Durán-Olivencia, J.F. Lutsko, Mesoscopic nucleation theory for confined systems: a one-parameter mode. Phys. Rev. E 91, 022402 (2015)

    Google Scholar 

  50. B.D. Goddard, A. Nold, S. Kalliadasis, Multi-species dynamical density functional theory. J. Chem. Phys. 138, 144904 (2013)

    Article  Google Scholar 

  51. B.D. Goddard, A. Nold, N. Savva, G.A. Pavliotis, S. Kalliadasis, General dynamical density functional theory for classical fluids. Phys. Rev. Lett. 109, 120603 (2012)

    Google Scholar 

  52. B.D. Goddard, A. Nold, N. Savva, P. Yatsyshin, S. Kalliadasis, Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments. J. Phys. Condens. Matter 25, 035101 (2013)

    Google Scholar 

  53. M.A. Durán-Olivencia, B.D. Goddard, S. Kalliadasis, Dynamical density functional theory for orientable colloids including inertia and hydrodynamic interactions. J. Stat. Phys. 164, 785 (2016)

    Article  MathSciNet  Google Scholar 

  54. P. Yatsyshin, S. Kalliadasis, Mean-field phenomenology of wetting in nanogrooves. Mol. Phys. 114, 2688 (2016)

    Article  Google Scholar 

  55. D. Bonn, D. Ross, Wetting transitions. Rep. Prog. Phys. 64, 1085 (2001)

    Article  Google Scholar 

  56. S. Dietrich. Wetting phenomena, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J.L. Lebowitz, vol. 12 (Academic Press, 1988), p. 2

    Google Scholar 

  57. R. Evans, A.O. Parry, Liquids at interfaces: what can a theorist contribute? J. Phys. Condens. Matter 2, SA15 (1990)

    Google Scholar 

  58. G. Forgacs, R. Lipowsky, T.M. Nieuwenhuizen, The behaviour of interfaces in ordered and disordered systems, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J.L. Lebowitz, vol. 14 (Academic Press, 1991), p. 135

    Google Scholar 

  59. E.H. Hauge, M. Schick, Continuous and first-order wetting transition from the van der Waals theory of fluids. Phys. Rev. B 27, 4288 (1983)

    Article  Google Scholar 

  60. P. Yatsyshin, A.O. Parry, C. Rascón, S. Kalliadasis, Classical density functional study of wetting transitions on nanopatterned surfaces. J. Phys. Condens. Matter 29, 094001 (2017)

    Google Scholar 

  61. P. Yatsyshin, A.O. Parry, S. Kalliadasis, Complete prewetting. J. Phys. Condens. Matter 28, 275001 (2016)

    Google Scholar 

  62. C. Rascón, A.O. Parry, Surface phase diagrams for wetting on heterogenous substrates. J. Chem. Phys. 115, 5258 (2001)

    Article  Google Scholar 

  63. C. Bauer, S. Dietrich, A.O. Parry, Morphological phase transitions of thin fluid films on chemically structured substrates. Europhys. Lett. 47, 474 (1999)

    Article  Google Scholar 

  64. C. Rascón, A.O. Parry, Wetting on non-planar and heterogeneous substrates. J. Phys. Condens. Matter 12, A369 (2000)

    Google Scholar 

  65. C. Bauer, E. Dietrich, Phase diagram for morphological transitions of wetting films on chemically structured substrates. Phys. Rev. E 61, 1664 (2000)

    Article  Google Scholar 

  66. C. Rascón, A.O. Parry, A. Sartori, Wetting at nonplanar substrates: unbending and unbinding. Phys. Rev. E 59, 5697 (1999)

    Article  Google Scholar 

  67. C. Bauer, S. Dietrich, Phase diagram for morphological transitions of wetting films on chemically structured substrates. Phys. Rev. E 61, 1664 (2000)

    Article  Google Scholar 

  68. W. Koch, S. Dietrich, M. Napiorkowski, Morphology and line tension of liquid films adsorbed on chemically structured substrates. Phys. Rev. E 51, 3300 (1995)

    Article  Google Scholar 

  69. C. Bauer, S. Dietrich, Quantitative study of laterally inhomogeneous wetting films. Eur. Phys. J. B 10, 767 (1999)

    Article  Google Scholar 

  70. C. Bauer, S. Dietrich, Wetting films on chemically heterogeneous substrates. Phys. Rev. E 60, 6919 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

PY is grateful to Dr. Miguel A. Durán-Olivencia from the Chemical Engineering Department of Imperial College (IC) for numerous stimulating discussions. We acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the UK through Grants No. EP/L027186 and EP/L020564 as well as an EPSRC-IC Pathways to Impact-Impact Acceleration Award, Grant No. EP/K503733, European Research Council via Advanced Grant No. 247031 and the European Framework 7 via Grant No. 214919 (Multiflow).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Yatsyshin or Serafim Kalliadasis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yatsyshin, P., Kalliadasis, S. (2018). Classical Density-Functional Theory Studies of Fluid Adsorption on Nanopatterned Planar Surfaces. In: Bonilla, L., Kaxiras, E., Melnik, R. (eds) Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications. BIRS-16w5069 2016. Springer Proceedings in Mathematics & Statistics, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-76599-0_10

Download citation

Publish with us

Policies and ethics