Skip to main content

Theoretical Properties of Materials Formed as Wire Network Graphs from Triply Periodic CMC Surfaces, Especially the Gyroid

  • Chapter
  • First Online:
The Role of Topology in Materials

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 189))

  • 2312 Accesses

Abstract

We report on our recent results from a mathematical study of wire network graphs that are complements to triply periodic CMC surfaces and can be synthesized in the lab on the nanoscale. Here, we studied all three cases in which the graphs corresponding to the networks are symmetric and self-dual. These are the cubic, diamond and gyroid surfaces. The gyroid is the most interesting case in its geometry and properties as it exhibits Dirac points (in 3d). It can be seen as a generalization of the honeycomb lattice in 2d that models graphene. Indeed, our theory works in more general cases, such as periodic networks in any dimension and even more abstract settings. After presenting our theoretical results, we aim to invite an experimental study of these Dirac points and a possible quantum Hall effect. The general theory also allows to find local symmetry groups which force degeneracies aka level crossings from a finite graph encoding the elementary cell structure. Vice-versa one could hope to start with graphs and then construct matching materials that will then exhibit the properties dictated by such graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here \(I4_132\) and \(Ia\bar{3}d\) are given in the international or Hermann–Mauguin notation for symmetry groups, see e.g. [4].

References

  1. D.M. Anderson, H.T. Davis, J.C.C. Nitsche, L.E. Scriven, Adv. Chem. Phys. 77, 337–396 (1990)

    Google Scholar 

  2. H.A. Schwarz, Gesammelte Mathematische Abhandlungen, vol. I (Springer, Berlin, 1890)

    Book  Google Scholar 

  3. A.H. Schoen, NASA TN-D5541 (1970)

    Google Scholar 

  4. T. Hahn (ed.), International Tables for Crystallography, vol. A (Springer, Berlin, 2005)

    Google Scholar 

  5. K.A. Brakke, Exp. Math. 1, 141–165 (1992)

    Article  MathSciNet  Google Scholar 

  6. C.A. Lambert, L.H. Radzilowski, E.L. Thomas, Curved surfaces in chemical structure. Philos. Trans. Math. Phys. Eng. Sci. 354(1715), 2009–2023 (1996)

    Article  ADS  Google Scholar 

  7. V.N. Urade, T.C. Wei, M.P. Tate, H.W. Hillhouse, Chem. Mater. 19(4), 768–777 (2007)

    Article  Google Scholar 

  8. K. Michielsen, D.G. Stavenga, J. R. Soc. Interface 5, 85–94 (2008)

    Article  Google Scholar 

  9. R.M. Kaufmann, S. Khlebnikov, B. Wehefritz-Kaufmann, J. Noncommutative Geom. 6, 623–664 (2012)

    Article  MathSciNet  Google Scholar 

  10. K. Große-Brauckmann, M. Wohlgemuth, Calc. Var. 4, 499–523 (1996)

    Article  Google Scholar 

  11. E. Stach, Private communication

    Google Scholar 

  12. S. Khlebnikov, H.W. Hillhouse, Phys. Rev. B 80(11), 115316 (2009)

    Article  ADS  Google Scholar 

  13. R.M. Kaufmann, S. Khlebnikov, B. Wehefritz-Kaufmann, J. Phys. Conf. Ser. 343, 012054 (2012)

    Article  Google Scholar 

  14. J. Bellissard, A. van Elst, H. Schulz-Baldes, J. Math. Phys. 35, 5373–5451 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Marcolli, V. Mathai, Towards the fractional quantum Hall effect: a noncommutative geometry perspective, in Noncommutative Geometry and Number Theory: Where Arithmetic Meets Geometry, ed. by Caterina Consani, Matilde Marcolli (Vieweg, Wiesbaden, 2006), pp. 235–263

    Google Scholar 

  16. G. Panati, H. Spohn, S. Teufel, Commun. Math. Phys. 242, 547–578 (2003)

    Article  ADS  Google Scholar 

  17. R.M. Kaufmann, S. Khlebnikov, B. Wehefritz-Kaufmann, J. Singul. 15, 53–80 (2016)

    MathSciNet  Google Scholar 

  18. M. Demazure, Classification des germs à point critique isolé et à nombres de modules 0 ou 1 (d’après Arnol’d). Séminaire Bourbaki, 26e année, vol. 1973/74 Exp. No 443, pp. 124–142, Lecture Notes in Mathematics, vol. 431 (Springer, Berlin, 1975)

    Google Scholar 

  19. R.M. Kaufmann, S. Khlebnikov, B. Wehefritz-Kaufmann, Ann. Phys. 327, 2865–2884 (2012)

    Article  ADS  Google Scholar 

  20. R.M. Kaufmann, S. Khlebnikov, B. Wehefritz-Kaufmann, Ann. Henri Poincaré 17, 1383–1414 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. R.M. Kaufmann, S. Khlebnikov, B. Wehefritz-Kaufmann, J. Phys. Conf. Ser. 597, 012048 (2015)

    Article  Google Scholar 

  22. J.E. Avron, A. Raveh, B. Zur, Rev. Mod. Phys. 60, 873 (1988)

    Article  ADS  Google Scholar 

  23. G. Karpilovsky, Projective Representations of Finite Groups (Dekker, New York, 1985)

    MATH  Google Scholar 

  24. R.M. Kaufmann, S. Khlebnikov, B. Wehefritz–Kaufmann, Topologically stable Dirac points in a three-dimensional supercrystal, in preparation

    Google Scholar 

  25. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405–408 (1982)

    Article  ADS  Google Scholar 

  26. B. Simon, Phys. Rev. Lett. 51, 2167–2170 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Husemöller, Fibre Bundles, vol. 20, Graduate Texts in Mathematics (Springer, Berlin, 1993)

    MATH  Google Scholar 

  28. M.V. Berry, Proc. R. Soc. Lond. A 392, 45–57 (1984)

    Article  ADS  Google Scholar 

  29. S.-Y. Xu et al., Science 347, 294 (2015)

    Article  ADS  Google Scholar 

  30. B.-J. Yang, N. Nagaosa, Nat. Commun. 5, 4898 (2014)

    Article  Google Scholar 

  31. L. Lu, L. Fu, J.D. Joannopoulo, M. Soljacic, Nat. Photonics 7, 294–299 (2013)

    Article  ADS  Google Scholar 

  32. A. Connes, Noncommutative Geometry (Academic Press Inc., San Diego, 1994)

    MATH  Google Scholar 

  33. J. Bellissard, From Number Theory to Physics (Springer, Berlin, 1992), pp. 538–630

    Book  Google Scholar 

  34. P.G. Harper, Proc. Phys. Soc. Lond. A 68, 874–878 (1955)

    Article  ADS  Google Scholar 

  35. D.R. Hofstadter, Phys. Rev. B 14(1976), 2239–2249 (1976)

    Article  ADS  Google Scholar 

  36. D. Weiss, Nat. Phys. 9, 395–396 (2013)

    Article  Google Scholar 

  37. M. Koshino, H. Aoki, Phys. Rev. B 67, 195336 (2003)

    Article  ADS  Google Scholar 

  38. C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K.L. Shepard, J. Hone, P. Kim, Nature 497, 598 (2013)

    Article  ADS  Google Scholar 

  39. J.R. Munkres, Topology: A First Course (Prentice-Hall Inc., Englewood Cliffs, 1975)

    MATH  Google Scholar 

  40. M. Kotani, T. Sunada, Trans. AMS 353, 1–20 (2000)

    Article  Google Scholar 

  41. T. Sunada, Jpn. J. Math. 7, 1–39 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

BK thankfully acknowledges support from the NSF under the grants PHY-0969689 and PHY-1255409. RK thanks the Simons Foundation for support under the collaboration grant #317149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Wehefritz-Kaufmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaufmann, R.M., Wehefritz-Kaufmann, B. (2018). Theoretical Properties of Materials Formed as Wire Network Graphs from Triply Periodic CMC Surfaces, Especially the Gyroid. In: Gupta, S., Saxena, A. (eds) The Role of Topology in Materials. Springer Series in Solid-State Sciences, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-76596-9_7

Download citation

Publish with us

Policies and ethics