Skip to main content

Topological Phases of Quantum Matter

  • Chapter
  • First Online:
The Role of Topology in Materials

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 189))

Abstract

Role of topology in generating exotic topological phases of quantum matter is discussed. Illustrative examples of 2D quantum spin-Hall insulators, 3D topological insulators, topological crystalline insulators, and topological Weyl and Dirac semi-metals are presented. We also comment on topological superconductors and on the effects of strong electron correlations in driving topological phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012). https://doi.org/10.1088/0034-4885/75/7/076501

    Article  ADS  Google Scholar 

  2. M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5. Nat. Phys. 9, 468–473 (2013). https://doi.org/10.1038/nphys2671

    Article  Google Scholar 

  3. J.W. Allen, B. Batlogg, P. Wachter, Large low-temperature Hall effect and resistivity in mixed-valent Sm\({\mathrm{B}}_{6}\). Phys. Rev. B 20, 4807–4813 (1979). https://doi.org/10.1103/PhysRevB.20.4807

    Article  ADS  Google Scholar 

  4. J.G. Analytis, R.D. McDonald, S.C. Riggs, J.-H. Chu, G.S. Boebinger, I.R. Fisher, Two-dimensional surface state in the quantum limit of a topological insulator. Nat. Phys. 6, 960–964 (2010). https://doi.org/10.1038/nphys1861

    Article  Google Scholar 

  5. A. Bansil, H. Lin, T. Das, Colloquium: topological band theory. Rev. Mod. Phys. 88, 021004 (2016). https://doi.org/10.1103/RevModPhys.88.021004

    Article  ADS  Google Scholar 

  6. R. Batabyal, N. Morali, N. Avraham, Y. Sun, M. Schmidt, C. Felser, A. Stern, B. Yan, H. Beidenkopf, Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv. 2, e1600709 (2016). https://doi.org/10.1126/sciadv.1600709

    Article  ADS  Google Scholar 

  7. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006). https://doi.org/10.1126/science.1133734

    Article  ADS  Google Scholar 

  8. A.M. Black-Schaffer, S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite. Phys. Rev. B 75, 134512 (2007). https://doi.org/10.1103/PhysRevB.75.134512

    Article  ADS  Google Scholar 

  9. F.Y. Bruno, A. Tamai, Q.S. Wu, I. Cucchi, C. Barreteau, A. de la Torre, S. McKeown Walker, S. Riccò, Z. Wang, T.K. Kim, M. Hoesch, M. Shi, N.C. Plumb, E. Giannini, A.A. Soluyanov, F. Baumberger, Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal \(\mathrm{WT}{\mathrm{e}}_{2}\). Phys. Rev. B 94, 121112 (2016). https://doi.org/10.1103/PhysRevB.94.121112

    Article  ADS  Google Scholar 

  10. P.M.R. Brydon, A.P. Schnyder, C. Timm, Topologically protected flat zero-energy surface bands in noncentrosymmetric superconductors. Phys. Rev. B 84, 020501 (2011). https://doi.org/10.1103/PhysRevB.84.020501

    Article  ADS  Google Scholar 

  11. A.A. Burkov, Negative longitudinal magnetoresistance in Dirac and Weyl metals. Phys. Rev. B 91, 245157 (2015). https://doi.org/10.1103/PhysRevB.91.245157

    Article  ADS  Google Scholar 

  12. A.A. Burkov, L. Balents, Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011). https://doi.org/10.1103/PhysRevLett.107.127205

    Article  ADS  Google Scholar 

  13. A.A. Burkov, Y.B. Kim, Z2 and chiral anomalies in topological dirac semimetals. Phys. Rev. Lett. 117, 136602 (2016). https://doi.org/10.1103/PhysRevLett.117.136602

    Article  ADS  Google Scholar 

  14. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). https://doi.org/10.1021/nn400280c

    Article  Google Scholar 

  15. C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, Q.-K. Xue, Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340, 167–170 (2013). https://doi.org/10.1126/science.1234414

    Article  ADS  Google Scholar 

  16. T.-R. Chang, S.-Y. Xu, D.S. Sanchez, S.-M. Huang, G. Chang, C.-H. Hsu, G. Bian, I. Belopolski, Z.-M. Yu, X. Xu, C. Xiang, S.A. Yang, T. Neupert, H.-T. Jeng, H. Lin, M.Z. Hasan, Type-II Topological Dirac Semimetals: Theory and Materials Prediction (VAl3 family). arXiv:160607555 Cond-Mat

    Google Scholar 

  17. X. Chen, Z.-C. Gu, X.-G. Wen, Complete classification of one-dimensional gapped quantum phases in interacting spin systems. Phys. Rev. B 84, 235128 (2011). https://doi.org/10.1103/PhysRevB.84.235128

    Article  ADS  Google Scholar 

  18. X. Chen, Z.-C. Gu, X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011). https://doi.org/10.1103/PhysRevB.83.035107

    Article  ADS  Google Scholar 

  19. X. Chen, Y. Yao, H. Yao, F. Yang, J. Ni, Topological p+ip superconductivity in doped graphene-like single-sheet materials \({\mathrm{BC}}_{3}\). Phys. Rev. B 92, 174503 (2015). https://doi.org/10.1103/PhysRevB.92.174503

  20. Y. Chen, S. Wu, A.A. Burkov, Axion response in Weyl semimetals. Phys. Rev. B 88, 125105 (2013). https://doi.org/10.1103/PhysRevB.88.125105

    Article  ADS  Google Scholar 

  21. Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009). https://doi.org/10.1126/science.1173034

    Article  ADS  Google Scholar 

  22. Y.L. Chen, J.-H. Chu, J.G. Analytis, Z.K. Liu, K. Igarashi, H.-H. Kuo, X.L. Qi, S.K. Mo, R.G. Moore, D.H. Lu, M. Hashimoto, T. Sasagawa, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.X. Shen, Massive dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010). https://doi.org/10.1126/science.1189924

    Article  ADS  Google Scholar 

  23. Y.L. Chen, Z.K. Liu, J.G. Analytis, J.-H. Chu, H.J. Zhang, B.H. Yan, S.-K. Mo, R.G. Moore, D.H. Lu, I.R. Fisher, S.C. Zhang, Z. Hussain, Z.-X. Shen, Single dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 105, 266401 (2010). https://doi.org/10.1103/PhysRevLett.105.266401

    Article  ADS  Google Scholar 

  24. C.-K. Chiu, H. Yao, S. Ryu, Classification of topological insulators and superconductors in the presence of reflection symmetry. Phys. Rev. B 88, 075142 (2013). https://doi.org/10.1103/PhysRevB.88.075142

    Article  ADS  Google Scholar 

  25. G.Y. Cho, Y.-M. Lu, J.E. Moore, Gapless edge states of background field theory and translation-symmetric \({\mathbb{Z}}_{2}\) spin liquids. Phys. Rev. B 86, 125101 (2012). https://doi.org/10.1103/PhysRevB.86.125101

  26. F.-C. Chuang, L.-Z. Yao, Z.-Q. Huang, Y.-T. Liu, C.-H. Hsu, T. Das, H. Lin, A. Bansil, Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi. Nano Lett. 14, 2505–2508 (2014). https://doi.org/10.1021/nl500206u

    Article  ADS  Google Scholar 

  27. J.C. Cooley, M.C. Aronson, Z. Fisk, P.C. Canfield, Sm\({\mathrm{B}}_{6}\): Kondo insulator or exotic metal? Phys. Rev. Lett. 74, 1629–1632 (1995). https://doi.org/10.1103/PhysRevLett.74.1629

    Article  ADS  Google Scholar 

  28. K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen, S. Zhou, Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016). https://doi.org/10.1038/nphys3871

    Article  Google Scholar 

  29. J.D. Denlinger, J.W. Allen, J.-S. Kang, K. Sun, B.-I. Min, D.-J. Kim, Z. Fisk, SmB6 Photoemission: Past and Present (2013). arXiv:13126636 Cond-Mat

    Google Scholar 

  30. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012). https://doi.org/10.1103/PhysRevB.85.075423

    Article  ADS  Google Scholar 

  31. L. Du, I. Knez, G. Sullivan, R.-R. Du, Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015). https://doi.org/10.1103/PhysRevLett.114.096802

    Article  ADS  Google Scholar 

  32. M. Dzero, K. Sun, P. Coleman, V. Galitski, Theory of topological Kondo insulators. Phys. Rev. B 85, 045130 (2012). https://doi.org/10.1103/PhysRevB.85.045130

    Article  ADS  Google Scholar 

  33. M. Dzero, K. Sun, V. Galitski, P. Coleman, Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010). https://doi.org/10.1103/PhysRevLett.104.106408

    Article  ADS  Google Scholar 

  34. P. Dziawa, B.J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Łusakowska, T. Balasubramanian, B.M. Wojek, M.H. Berntsen, O. Tjernberg, T. Story, Topological crystalline insulator states in Pb1−xSnxSe. Nat. Mater. 11, 1023–1027 (2012). https://doi.org/10.1038/nmat3449

    Article  ADS  Google Scholar 

  35. S.V. Eremeev, G. Landolt, T.V. Menshchikova, B. Slomski, Y.M. Koroteev, Z.S. Aliev, M.B. Babanly, J. Henk, A. Ernst, L. Patthey, A. Eich, A.A. Khajetoorians, J. Hagemeister, O. Pietzsch, J. Wiebe, R. Wiesendanger, P.M. Echenique, S.S. Tsirkin, I.R. Amiraslanov, J.H. Dil, E.V. Chulkov, Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nat. Commun. 3, 635 (2012). https://doi.org/10.1038/ncomms1638

    Article  ADS  Google Scholar 

  36. C. Fang, B.A. Bernevig, M.J. Gilbert, Topological crystalline superconductors with linearly and projectively represented Cn symmetry (2017). arXiv:170101944 Cond-Mat

    Google Scholar 

  37. C. Fang, M. Gilbert, X. Dai, B. Bernevig, Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012). https://doi.org/10.1103/PhysRevLett.108.266802

    Article  ADS  Google Scholar 

  38. C. Fang, M.J. Gilbert, B.A. Bernevig, Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators. Phys. Rev. Lett. 112, 046801 (2014). https://doi.org/10.1103/PhysRevLett.112.046801

    Article  ADS  Google Scholar 

  39. C. Fang, M.J. Gilbert, B.A. Bernevig, Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012). https://doi.org/10.1103/PhysRevB.86.115112

    Article  ADS  Google Scholar 

  40. L. Fidkowski, A. Kitaev, Topological phases of fermions in one dimension. Phys. Rev. B 83, 075103 (2011). https://doi.org/10.1103/PhysRevB.83.075103

    Article  ADS  Google Scholar 

  41. M.H. Fischer, T. Neupert, C. Platt, A.P. Schnyder, W. Hanke, J. Goryo, R. Thomale, M. Sigrist, Chiral d-wave superconductivity in SrPtAs. Phys. Rev. B 89, 020509 (2014). https://doi.org/10.1103/PhysRevB.89.020509

    Article  ADS  Google Scholar 

  42. K. Flachbart, K. Gloos, E. Konovalova, Y. Paderno, M. Reiffers, P. Samuely, P. Švec, Energy gap of intermediate-valent SmB6 studied by point-contact spectroscopy. Phys. Rev. B 64, 085104 (2001). https://doi.org/10.1103/PhysRevB.64.085104

  43. M. Freedman, C. Nayak, K. Shtengel, K. Walker, Z. Wang, A class of P, T-invariant topological phases of interacting electrons. Ann. Phys. 310, 428–492 (2004). https://doi.org/10.1016/j.aop.2004.01.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. L. Fu, Odd-parity topological superconductor with nematic order: Application to CuxBi2Se3. Phys. Rev. B 90, 100509 (2014). https://doi.org/10.1103/PhysRevB.90.100509

  45. L. Fu, Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011). https://doi.org/10.1103/PhysRevLett.106.106802

    Article  ADS  Google Scholar 

  46. L. Fu, E. Berg, Odd-parity topological superconductors: theory and application to CuxBi2Se3. Phys. Rev. Lett. 105, 097001 (2010). https://doi.org/10.1103/PhysRevLett.105.097001

  47. L. Fu, C.L. Kane, Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008). https://doi.org/10.1103/PhysRevLett.100.096407

    Article  ADS  Google Scholar 

  48. L. Fu, C.L. Kane, Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007). https://doi.org/10.1103/PhysRevB.76.045302

    Article  ADS  Google Scholar 

  49. L. Fu, C.L. Kane, Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006). https://doi.org/10.1103/PhysRevB.74.195312

    Article  ADS  Google Scholar 

  50. L. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007). https://doi.org/10.1103/PhysRevLett.98.106803

    Article  ADS  Google Scholar 

  51. T. Fukui, Y. Hatsugai, Quantum spin hall effect in three dimensional materials: lattice computation of Z2 topological invariants and its application to Bi and Sb. J. Phys. Soc. Jpn. 76, 053702 (2007). https://doi.org/10.1143/JPSJ.76.053702

    Article  ADS  Google Scholar 

  52. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). https://doi.org/10.1103/PhysRevD.78.074033

    Article  ADS  Google Scholar 

  53. K.K. Gomes, W. Ko, W. Mar, Y. Chen, Z.-X. Shen, H.C. Manoharan, Quantum imaging of topologically unpaired spin-polarized dirac fermions (2009) 0909.0921

    Google Scholar 

  54. B. Gorshunov, N. Sluchanko, A. Volkov, M. Dressel, G. Knebel, A. Loidl, S. Kunii, Low-energy electrodynamics of SmB6. Phys. Rev. B 59, 1808–1814 (1999). https://doi.org/10.1103/PhysRevB.59.1808

    Article  ADS  Google Scholar 

  55. G. Gupta, H. Lin, A. Bansil, M.B.A. Jalil, C.-Y. Huang, W.-F. Tsai, G. Liang, Y-shape spin-separator for two-dimensional group-IV nanoribbons based on quantum spin hall effect. Appl. Phys. Lett. 104, 032410 (2014). https://doi.org/10.1063/1.4863088

    Article  ADS  Google Scholar 

  56. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). https://doi.org/10.1103/RevModPhys.82.3045

    Article  ADS  Google Scholar 

  57. Y. Hatsugai, Topological aspects of the quantum hall effect. J. Phys.: Condens. Mat. 9, 2507–2549 (1997)

    ADS  Google Scholar 

  58. A. Heimes, P. Kotetes, G. Schön, Majorana fermions from Shiba states in an antiferromagnetic chain on top of a superconductor. Phys. Rev. B 90, 060507 (2014). https://doi.org/10.1103/PhysRevB.90.060507

    Article  ADS  Google Scholar 

  59. Y.S. Hor, A. Richardella, P. Roushan, Y. Xia, J.G. Checkelsky, A. Yazdani, M.Z. Hasan, N.P. Ong, R.J. Cava, p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B 79, 195208 (2009). https://doi.org/10.1103/PhysRevB.79.195208

  60. Y.S. Hor, A.J. Williams, J.G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H.W. Zandbergen, A. Yazdani, N.P. Ong, R.J. Cava, Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 104, 057001 (2010). https://doi.org/10.1103/PhysRevLett.104.057001

  61. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, M.Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970 (2008). https://doi.org/10.1038/nature06843

    Article  ADS  Google Scholar 

  62. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009). https://doi.org/10.1038/nature08234

    Article  ADS  Google Scholar 

  63. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. Dil, J. Osterwalder, L. Patthey, A. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. Hor, R. Cava, M. Hasan, Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys. Rev. Lett. 103 (2009). https://doi.org/10.1103/physrevlett.103.146401

  64. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J.H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C.L. Kane, Y.S. Hor, R.J. Cava, M.Z. Hasan, Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009). https://doi.org/10.1126/science.1167733

    Article  ADS  Google Scholar 

  65. T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012). https://doi.org/10.1038/ncomms1969

    Article  ADS  Google Scholar 

  66. C.-R. Hu, Midgap surface states as a novel signature for d x a2xb2-wave superconductivity. Phys. Rev. Lett. 72, 1526–1529 (1994). https://doi.org/10.1103/PhysRevLett.72.1526

  67. J. Hu, J. Alicea, R. Wu, M. Franz, Giant topological insulator gap in graphene with 5d Adatoms. Phys. Rev. Lett. 109, 266801 (2012). https://doi.org/10.1103/PhysRevLett.109.266801

    Article  ADS  Google Scholar 

  68. C.-Y. Huang, H. Lin, Y.J. Wang, A. Bansil, W.-F. Tsai, Hedgehog spin texture and competing orders associated with strains on the surface of a topological crystalline insulator. Phys. Rev. B 93, 205304 (2016). https://doi.org/10.1103/PhysRevB.93.205304

    Article  ADS  Google Scholar 

  69. J.-Q. Huang, C.-H. Hsu, H. Lin, D.-X. Yao, W.-F. Tsai, Chiral p-wave superconductivity in Sb(111) thin films close to Van Hove singularities. Phys. Rev. B 93, 155108 (2016). https://doi.org/10.1103/PhysRevB.93.155108

    Article  ADS  Google Scholar 

  70. L. Huang, T.M. McCormick, M. Ochi, Z. Zhao, M.-T. Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N. Trivedi, A. Kaminski, Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016). https://doi.org/10.1038/nmat4685

    Article  ADS  Google Scholar 

  71. S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, M.Z. Hasan, A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015)

    Article  Google Scholar 

  72. T.L. Hughes, E. Prodan, B.A. Bernevig, Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011). https://doi.org/10.1103/PhysRevB.83.245132

    Article  ADS  Google Scholar 

  73. H. Inoue, A. Gyenis, Z. Wang, J. Li, S.W. Oh, S. Jiang, N. Ni, B.A. Bernevig, A. Yazdani, Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016). https://doi.org/10.1126/science.aad8766

    Article  ADS  Google Scholar 

  74. K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, Y. Onuki, Angular position of nodes in the superconducting gap of Quasi-2D heavy-fermion superconductor CeCoIn5. Phys. Rev. Lett. 87, 057002 (2001). https://doi.org/10.1103/PhysRevLett.87.057002

  75. J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z.R. Ye, M. Xu, Q.Q. Ge, S.Y. Tan, X.H. Niu, M. Xia, B.P. Xie, Y.F. Li, X.H. Chen, H.H. Wen, D.L. Feng, Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission. Nat. Commun. 4, ncomms4010 (2013). https://doi.org/10.1038/ncomms4010

  76. Y. Jiang, D.-X. Yao, E.W. Carlson, H.-D. Chen, J. Hu, Andreev conductance in the d+id’ wave superconducting states of graphene. Phys. Rev. B 77, 235420 (2008). https://doi.org/10.1103/PhysRevB.77.235420

    Article  ADS  Google Scholar 

  77. C.L. Kane, E.J. Mele, Quantum Spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005). https://doi.org/10.1103/PhysRevLett.95.226801

    Article  ADS  Google Scholar 

  78. M. Kargarian, J. Wen, G.A. Fiete, Competing exotic topological insulator phases in transition-metal oxides on the pyrochlore lattice with distortion. Phys. Rev. B 83, 165112 (2011). https://doi.org/10.1103/PhysRevB.83.165112

    Article  ADS  Google Scholar 

  79. Y. Kasahara, T. Iwasawa, H. Shishido, T. Shibauchi, K. Behnia, Y. Haga, T.D. Matsuda, Y. Onuki, M. Sigrist, Y. Matsuda, Exotic superconducting properties in the electron-hole-compensated heavy-fermion “Semimetal’’ URu2Si2. Phys. Rev. Lett. 99, 116402 (2007). https://doi.org/10.1103/PhysRevLett.99.116402

  80. D.J. Kim, J. Xia, Z. Fisk, Topological surface state in the Kondo insulator samarium hexaboride. Nat. Mater. 13, 466–470 (2014). https://doi.org/10.1038/nmat3913

    Article  ADS  Google Scholar 

  81. A. Kitaev, V. Lebedev, M. Feigel’man, Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009). https://doi.org/10.1063/1.3149495

    Article  ADS  MATH  Google Scholar 

  82. A.Y. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003). https://doi.org/10.1016/S0003-4916(02)00018-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980). https://doi.org/10.1103/PhysRevLett.45.494

    Article  ADS  Google Scholar 

  84. K. von Klitzing, Developments in the quantum Hall effect. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 363, 2203–2219 (2005). https://doi.org/10.1098/rsta.2005.1640

    Article  ADS  MathSciNet  Google Scholar 

  85. I. Knez, R.-R. Du, G. Sullivan, Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011). https://doi.org/10.1103/PhysRevLett.107.136603

    Article  ADS  Google Scholar 

  86. I. Knez, C.T. Rettner, S.-H. Yang, S.S.P. Parkin, L. Du, R.-R. Du, G. Sullivan, Observation of edge transport in the disordered regime of topologically insulating InAs/GaSb quantum wells. Phys. Rev. Lett. 112, 026602 (2014). https://doi.org/10.1103/PhysRevLett.112.026602

    Article  ADS  Google Scholar 

  87. D. Kong, Y. Chen, J.J. Cha, Q. Zhang, J.G. Analytis, K. Lai, Z. Liu, S.S. Hong, K.J. Koski, S.-K. Mo, Z. Hussain, I.R. Fisher, Z.-X. Shen, Y. Cui, Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning. Nat. Nanotechnol. 6, 705–709 (2011). https://doi.org/10.1038/nnano.2011.172

    Article  ADS  Google Scholar 

  88. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007). https://doi.org/10.1126/science.1148047

    Article  ADS  Google Scholar 

  89. W.-C. Lee, C. Wu, D.P. Arovas, S.-C. Zhang, Quasiparticle interference on the surface of the topological insulator Bi2Te3. Phys. Rev. B 80, 245439 (2009). https://doi.org/10.1103/PhysRevB.80.245439

  90. M. Levin, A. Stern, Classification and analysis of two-dimensional Abelian fractional topological insulators. Phys. Rev. B 86, 115131 (2012). https://doi.org/10.1103/PhysRevB.86.115131

    Article  ADS  Google Scholar 

  91. Z. Li, J. Li, P. Blaha, N. Kioussis, Predicted topological phase transition in the SmS Kondo insulator under pressure. Phys. Rev. B 89, 121117 (2014). https://doi.org/10.1103/PhysRevB.89.121117

    Article  ADS  Google Scholar 

  92. H. Lin, R.S. Markiewicz, L.A. Wray, L. Fu, M.Z. Hasan, A. Bansil, Single-Dirac-Cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 105, 036404 (2010). https://doi.org/10.1103/PhysRevLett.105.036404

  93. C.-C. Liu, W. Feng, Y. Yao, Quantum Spin Hall effect in silicene and two-dimensional Germanium. Phys. Rev. Lett. 107, 076802 (2011). https://doi.org/10.1103/PhysRevLett.107.076802

    Article  ADS  Google Scholar 

  94. C.-X. Liu, R.-X. Zhang, B.K. VanLeeuwen, Topological nonsymmorphic crystalline insulators. Phys. Rev. B 90, 085304 (2014). https://doi.org/10.1103/PhysRevB.90.085304

    Article  ADS  Google Scholar 

  95. J. Liu, T.H. Hsieh, P. Wei, W. Duan, J. Moodera, L. Fu, Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 13, 178–183 (2014). https://doi.org/10.1038/nmat3828

    Article  ADS  Google Scholar 

  96. Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi, S.-C. Zhang, Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009). https://doi.org/10.1103/PhysRevLett.102.156603

    Article  ADS  Google Scholar 

  97. Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.-K. Mo, Z.X. Shen, Z. Fang, X. Dai, Z. Hussain, Y.L. Chen, Discovery of a three-dimensional topological dirac semimetal, Na3Bi. Science 343, 864–867 (2014). https://doi.org/10.1126/science.1245085

    Article  ADS  Google Scholar 

  98. B.Q. Lv, S. Muff, T. Qian, Z.D. Song, S.M. Nie, N. Xu, P. Richard, C.E. Matt, N.C. Plumb, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, J.H. Dil, J. Mesot, M. Shi, H.M. Weng, H. Ding, Observation of Fermi-Arc spin texture in TaAs. Phys. Rev. Lett. 115, 217601 (2015). https://doi.org/10.1103/PhysRevLett.115.217601

    Article  ADS  Google Scholar 

  99. B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015). https://doi.org/10.1103/PhysRevX.5.031013

    Article  Google Scholar 

  100. J. Maciejko, X.-L. Qi, A. Karch, S.-C. Zhang, Fractional topological insulators in three dimensions. Phys. Rev. Lett. 105, 246809 (2010). https://doi.org/10.1103/PhysRevLett.105.246809

    Article  ADS  Google Scholar 

  101. A.P. Mackenzie, Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003). https://doi.org/10.1103/RevModPhys.75.657

    Article  ADS  Google Scholar 

  102. R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011). https://doi.org/10.1039/C0NR00323A

    Article  ADS  Google Scholar 

  103. K. Matsuhira, M. Wakeshima, R. Nakanishi, T. Yamada, A. Nakamura, W. Kawano, S. Takagi, Y. Hinatsu, Metal-insulator transition in pyrochlore iridates Ln2Ir2O7 (Ln = Nd, Sm, and Eu). J. Phys. Soc. Jpn. 76, 043706 (2007). https://doi.org/10.1143/JPSJ.76.043706

    Article  ADS  Google Scholar 

  104. T. Meng, L. Balents, Weyl superconductors. Phys. Rev. B 86, 054504 (2012). https://doi.org/10.1103/PhysRevB.86.054504

    Article  ADS  Google Scholar 

  105. T.V. Menshchikova, M.M. Otrokov, S.S. Tsirkin, D.A. Samorokov, V.V. Bebneva, A. Ernst, V.M. Kuznetsov, E.V. Chulkov, Band structure engineering in topological insulator based heterostructures. Nano Lett. 13, 6064–6069 (2013). https://doi.org/10.1021/nl403312y

    Article  ADS  Google Scholar 

  106. J.E. Moore, L. Balents, Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007). https://doi.org/10.1103/PhysRevB.75.121306

    Article  ADS  Google Scholar 

  107. R. Movshovich, M. Jaime, J.D. Thompson, C. Petrovic, Z. Fisk, P.G. Pagliuso, J.L. Sarrao, Unconventional superconductivity in CeIrIn5 and CeCoIn5: specific heat and thermal conductivity studies. Phys. Rev. Lett. 86, 5152–5155 (2001). https://doi.org/10.1103/PhysRevLett.86.5152

    Article  ADS  Google Scholar 

  108. S. Murakami, Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007). https://doi.org/10.1088/1367-2630/9/9/356

    Article  ADS  Google Scholar 

  109. S. Murakami, S. Iso, Y. Avishai, M. Onoda, N. Nagaosa, Tuning phase transition between quantum spin Hall and ordinary insulating phases. Phys. Rev. B 76, 205304 (2007). https://doi.org/10.1103/PhysRevB.76.205304

    Article  ADS  Google Scholar 

  110. S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014). https://doi.org/10.1126/science.1259327

    Article  ADS  Google Scholar 

  111. R. Nandkishore, L.S. Levitov, A.V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012). https://doi.org/10.1038/nphys2208

    Article  Google Scholar 

  112. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008). https://doi.org/10.1103/RevModPhys.80.1083

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. M. Neupane, N. Alidoust, S.-Y. Xu, T. Kondo, Y. Ishida, D.J. Kim, C. Liu, I. Belopolski, Y.J. Jo, T.-R. Chang, H.-T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, M.Z. Hasan, Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun. 4, 3010 (2013). https://doi.org/10.1038/ncomms3991

    Article  Google Scholar 

  114. M. Neupane, A. Richardella, J. Sánchez-Barriga, S. Xu, N. Alidoust, I. Belopolski, C. Liu, G. Bian, D. Zhang, D. Marchenko, A. Varykhalov, O. Rader, M. Leandersson, T. Balasubramanian, T.-R. Chang, H.-T. Jeng, S. Basak, H. Lin, A. Bansil, N. Samarth, M.Z. Hasan, Observation of quantum-tunnelling-modulated spin texture in ultrathin topological insulator Bi2Se3 films. Nat. Commun. 5, 3841 (2014). https://doi.org/10.1038/ncomms4841

    Article  ADS  Google Scholar 

  115. M. Neupane, S.-Y. Xu, R. Sankar, Q. Gibson, Y.J. Wang, I. Belopolski, N. Alidoust, G. Bian, P.P. Shibayev, D.S. Sanchez, Y. Ohtsubo, A. Taleb-Ibrahimi, S. Basak, W.-F. Tsai, H. Lin, T. Durakiewicz, R.J. Cava, A. Bansil, F.C. Chou, M.Z. Hasan, Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator. Phys. Rev. B 92, 075131 (2015). https://doi.org/10.1103/PhysRevB.92.075131

    Article  ADS  Google Scholar 

  116. M. Neupane, S.-Y. Xu, L.A. Wray, A. Petersen, R. Shankar, N. Alidoust, C. Liu, A. Fedorov, H. Ji, J.M. Allred, Y.S. Hor, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, R.J. Cava, M.Z. Hasan, Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 85, 235406 (2012). https://doi.org/10.1103/PhysRevB.85.235406

    Article  ADS  Google Scholar 

  117. H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice. Nucl. Phys. B 185, 20–40 (1981). https://doi.org/10.1016/0550-3213(81)90361-8

    Article  ADS  Google Scholar 

  118. H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice (II). Nucl. Phys. B 193, 173–194 (1981). https://doi.org/10.1016/0550-3213(81)90524-1

    Article  ADS  Google Scholar 

  119. M. Novak, S. Sasaki, M. Kriener, K. Segawa, Y. Ando, Unusual nature of fully gapped superconductivity in In-doped SnTe. Phys. Rev. B 88, 140502 (2013). https://doi.org/10.1103/PhysRevB.88.140502

    Article  ADS  Google Scholar 

  120. T. Ojanen, Helical Fermi arcs and surface states in time-reversal invariant Weyl semimetals. Phys. Rev. B 87, 245112 (2013). https://doi.org/10.1103/PhysRevB.87.245112

    Article  ADS  Google Scholar 

  121. Y. Okada, M. Serbyn, H. Lin, D. Walkup, W. Zhou, C. Dhital, M. Neupane, S. Xu, Y.J. Wang, R. Sankar, F. Chou, A. Bansil, M.Z. Hasan, S.D. Wilson, L. Fu, V. Madhavan, Observation of Dirac node formation and mass acquisition in a topological crystalline insulator. Science 341, 1496–1499 (2013). https://doi.org/10.1126/science.1239451

    Article  ADS  Google Scholar 

  122. K. Okamoto, K. Kuroda, H. Miyahara, K. Miyamoto, T. Okuda, Z.S. Aliev, M.B. Babanly, I.R. Amiraslanov, K. Shimada, H. Namatame, M. Taniguchi, D.A. Samorokov, T.V. Menshchikova, E.V. Chulkov, A. Kimura, Observation of a highly spin-polarized topological surface state in GeBi2Te4. Phys. Rev. B 86, 195304 (2012). https://doi.org/10.1103/PhysRevB.86.195304

    Article  ADS  Google Scholar 

  123. H. Ooguri, M. Oshikawa, Instability in magnetic materials with a dynamical axion field. Phys. Rev. Lett. 108, 161803 (2012). https://doi.org/10.1103/PhysRevLett.108.161803

    Article  ADS  Google Scholar 

  124. D. Pesin, L. Balents, Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376–381 (2010). https://doi.org/10.1038/nphys1606

    Article  Google Scholar 

  125. F. Pientka, L.I. Glazman, F. von Oppen, Topological superconducting phase in helical Shiba chains. Phys. Rev. B 88, 155420 (2013). https://doi.org/10.1103/PhysRevB.88.155420

    Article  ADS  Google Scholar 

  126. X.-L. Qi, T.L. Hughes, S. Raghu, S.-C. Zhang, Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys. Rev. Lett. 102, 187001 (2009). https://doi.org/10.1103/PhysRevLett.102.187001

    Article  ADS  Google Scholar 

  127. X.-L. Qi, T.L. Hughes, S.-C. Zhang, Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008). https://doi.org/10.1103/PhysRevB.78.195424

    Article  ADS  Google Scholar 

  128. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011). https://doi.org/10.1103/RevModPhys.83.1057

    Article  ADS  Google Scholar 

  129. N. Read, D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000). https://doi.org/10.1103/PhysRevB.61.10267

    Article  ADS  Google Scholar 

  130. P. Roushan, J. Seo, C.V. Parker, Y.S. Hor, D. Hsieh, D. Qian, A. Richardella, M.Z. Hasan, R.J. Cava, A. Yazdani, Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106 (2009). https://doi.org/10.1038/nature08308

    Article  ADS  Google Scholar 

  131. R. Roy, Topological superfluids with time reversal symmetry (2008). arXiv:08032868 Cond-Mat

    Google Scholar 

  132. S. Ryu, Y. Hatsugai, Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002). https://doi.org/10.1103/PhysRevLett.89.077002

    Article  ADS  Google Scholar 

  133. S. Sasaki, Z. Ren, A.A. Taskin, K. Segawa, L. Fu, Y. Ando, Odd-parity pairing and topological superconductivity in a strongly spin-orbit coupled semiconductor. Phys. Rev. Lett. 109, 217004 (2012). https://doi.org/10.1103/PhysRevLett.109.217004

    Article  ADS  Google Scholar 

  134. M. Sato, Nodal structure of superconductors with time-reversal invariance and Z2 topological number. Phys. Rev. B 73, 214502 (2006). https://doi.org/10.1103/PhysRevB.73.214502

  135. T. Sato, K. Segawa, H. Guo, K. Sugawara, S. Souma, T. Takahashi, Y. Ando, Direct evidence for the Dirac-Cone topological surface states in the ternary chalcogenide TlBiSe2. Phys. Rev. Lett. 105, 136802 (2010). https://doi.org/10.1103/PhysRevLett.105.136802

  136. A.P. Schnyder, P.M.R. Brydon, Topological surface states in nodal superconductors. J. Phys.: Condens. Matter 27, 243201 (2015). https://doi.org/10.1088/0953-8984/27/24/243201

    Article  ADS  Google Scholar 

  137. A.P. Schnyder, P.M.R. Brydon, C. Timm, Types of topological surface states in nodal noncentrosymmetric superconductors. Phys. Rev. B 85, 024522 (2012). https://doi.org/10.1103/PhysRevB.85.024522

    Article  ADS  Google Scholar 

  138. A.P. Schnyder, S. Ryu, Topological phases and surface flat bands in superconductors without inversion symmetry. Phys. Rev. B 84, 060504 (2011). https://doi.org/10.1103/PhysRevB.84.060504

    Article  ADS  Google Scholar 

  139. A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008). https://doi.org/10.1103/PhysRevB.78.195125

    Article  ADS  Google Scholar 

  140. T. Senthil, Symmetry-protected topological phases of quantum matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015). https://doi.org/10.1146/annurev-conmatphys-031214-014740

    Article  ADS  Google Scholar 

  141. M. Serbyn, L. Fu, Symmetry breaking and Landau quantization in topological crystalline insulators. Phys. Rev. B 90, 035402 (2014). https://doi.org/10.1103/PhysRevB.90.035402

    Article  ADS  Google Scholar 

  142. K. Shiozaki, M. Sato, Topology of crystalline insulators and superconductors. Phys. Rev. B 90, 165114 (2014). https://doi.org/10.1103/PhysRevB.90.165114

    Article  ADS  Google Scholar 

  143. K. Shiozaki, M. Sato, K. Gomi, Topology of nonsymmorphic crystalline insulators and superconductors. Phys. Rev. B 93, 195413 (2016). https://doi.org/10.1103/PhysRevB.93.195413

    Article  ADS  Google Scholar 

  144. A. Shitade, H. Katsura, J. Kuneš, X.-L. Qi, S.-C. Zhang, N. Nagaosa, Quantum Spin Hall effect in a transition metal oxide Na3IrO3. Phys. Rev. Lett. 102, 256403 (2009). https://doi.org/10.1103/PhysRevLett.102.256403

  145. R.-J. Slager, A. Mesaros, V. Juričić, J. Zaanen, The space group classification of topological band-insulators. Nat. Phys. 9, 98–102 (2013). https://doi.org/10.1038/nphys2513

    Article  MATH  Google Scholar 

  146. D.T. Son, B.Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013). https://doi.org/10.1103/PhysRevB.88.104412

    Article  ADS  Google Scholar 

  147. Z. Song, C.-C. Liu, J. Yang, J. Han, M. Ye, B. Fu, Y. Yang, Q. Niu, J. Lu, Y. Yao, Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X=H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 6, e147 (2014). https://doi.org/10.1038/am.2014.113

    Article  Google Scholar 

  148. B. Swingle, M. Barkeshli, J. McGreevy, T. Senthil, Correlated topological insulators and the fractional magnetoelectric effect. Phys. Rev. B 83, 195139 (2011). https://doi.org/10.1103/PhysRevB.83.195139

    Article  ADS  Google Scholar 

  149. Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, Y. Ando, Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012). https://doi.org/10.1038/nphys2442

    Article  Google Scholar 

  150. J.C.Y. Teo, L. Fu, C.L. Kane, Surface states and topological invariants in three-dimensional topological insulators: application to Bi1−xSbx. Phys. Rev. B 78, 045426 (2008). https://doi.org/10.1103/PhysRevB.78.045426

  151. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982). https://doi.org/10.1103/PhysRevLett.49.405

    Article  ADS  Google Scholar 

  152. W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, A. Bansil, Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat. Commun. 4, 1500 (2013). https://doi.org/10.1038/ncomms2525

    Article  Google Scholar 

  153. C.C. Tsuei, J.R. Kirtley, Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000). https://doi.org/10.1103/RevModPhys.72.969

    Article  ADS  Google Scholar 

  154. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982). https://doi.org/10.1103/PhysRevLett.48.1559

    Article  ADS  Google Scholar 

  155. A.M. Turner, A. Vishwanath, Beyond band insulators: topology of semimetals and interacting phases. Contemp. Concepts Condens. Matter Sci Topol. Insul. 6, 293–324 (2013). https://doi.org/10.1016/B978-0-444-63314-9.00011-1

    Article  Google Scholar 

  156. A.M. Turner, Y. Zhang, R.S.K. Mong, A. Vishwanath, Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012). https://doi.org/10.1103/PhysRevB.85.165120

    Article  ADS  Google Scholar 

  157. O. Vafek, A. Vishwanath, Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014). https://doi.org/10.1146/annurev-conmatphys-031113-133841

    Article  ADS  Google Scholar 

  158. M.M. Vazifeh, M. Franz, Electromagnetic response of weyl semimetals. Phys. Rev. Lett. 111, 027201 (2013). https://doi.org/10.1103/PhysRevLett.111.027201

    Article  ADS  Google Scholar 

  159. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011). https://doi.org/10.1103/PhysRevB.83.205101

    Article  ADS  Google Scholar 

  160. C. Wang, Y. Zhang, J. Huang, S. Nie, G. Liu, A. Liang, Y. Zhang, B. Shen, J. Liu, C. Hu, Y. Ding, D. Liu, Y. Hu, S. He, L. Zhao, L. Yu, J. Hu, J. Wei, Z. Mao, Y. Shi, X. Jia, F. Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, H. Weng, X. Dai, Z. Fang, Z. Xu, C. Chen, X.J. Zhou, Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 241119 (2016). https://doi.org/10.1103/PhysRevB.94.241119

  161. E. Wang, H. Ding, A.V. Fedorov, W. Yao, Z. Li, Y.-F. Lv, K. Zhao, L.-G. Zhang, Z. Xu, J. Schneeloch, R. Zhong, S.-H. Ji, L. Wang, K. He, X. Ma, G. Gu, H. Yao, Q.-K. Xue, X. Chen, S. Zhou, Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 9, 621–625 (2013). https://doi.org/10.1038/nphys2744

    Article  Google Scholar 

  162. M.-X. Wang, C. Liu, J.-P. Xu, F. Yang, L. Miao, M.-Y. Yao, C.L. Gao, C. Shen, X. Ma, X. Chen, Z.-A. Xu, Y. Liu, S.-C. Zhang, D. Qian, J.-F. Jia, Q.-K. Xue, The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012). https://doi.org/10.1126/science.1216466

    Article  ADS  Google Scholar 

  163. Q.-Z. Wang, C.-X. Liu, Topological nonsymmorphic crystalline superconductors. Phys. Rev. B 93, 020505 (2016). https://doi.org/10.1103/PhysRevB.93.020505

    Article  ADS  Google Scholar 

  164. Y.J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M.Z. Hasan, A. Bansil, Nontrivial spin texture of the coaxial Dirac cones on the surface of topological crystalline insulator SnTe. Phys. Rev. B 87, 235317 (2013). https://doi.org/10.1103/PhysRevB.87.235317

    Article  ADS  Google Scholar 

  165. Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys. Rev. B 85, 195320 (2012). https://doi.org/10.1103/PhysRevB.85.195320

  166. X.-G. Wen, Zoo of quantum-topological phases of matter (2016). arXiv:161003911 Cond-Mat

    Google Scholar 

  167. X.G. Wen, Topological orders in rigid states. Int. J. Mod. Phys. B 04, 239–271 (1990). https://doi.org/10.1142/S0217979290000139

    Article  ADS  MathSciNet  Google Scholar 

  168. X.G. Wen, Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B 40, 7387–7390 (1989). https://doi.org/10.1103/PhysRevB.40.7387

    Article  ADS  Google Scholar 

  169. H. Weng, C. Fang, Z. Fang, B.A. Bernevig, X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015). https://doi.org/10.1103/PhysRevX.5.011029

    Article  Google Scholar 

  170. H. Weng, J. Zhao, Z. Wang, Z. Fang, X. Dai, Topological crystalline kondo insulator in mixed valence Ytterbium borides. Phys. Rev. Lett. 112, 016403 (2014). https://doi.org/10.1103/PhysRevLett.112.016403

    Article  ADS  Google Scholar 

  171. H. Weyl, Electron and gravitation. Z. Phys. 56, 330–352 (1929). https://doi.org/10.1007/BF01339504

    Article  ADS  MATH  Google Scholar 

  172. L.A. Wray, S.-Y. Xu, Y. Xia, Y.S. Hor, D. Qian, A.V. Fedorov, H. Lin, A. Bansil, R.J. Cava, M.Z. Hasan, Observation of topological order in a superconducting doped topological insulator. Nat. Phys. 6, 855–859 (2010). https://doi.org/10.1038/NPHYS1762

    Article  Google Scholar 

  173. L.A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A.V. Fedorov, Y.S. Hor, R.J. Cava, A. Bansil, H. Lin, M.Z. Hasan, A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nat. Phys. 7, 32–37 (2011). https://doi.org/10.1038/NPHYS1838

    Article  Google Scholar 

  174. G. Wu, H. Chen, Y. Sun, X. Li, P. Cui, C. Franchini, J. Wang, X.-Q. Chen, Z. Zhang, Tuning the vertical location of helical surface states in topological insulator heterostructures via dual-proximity effects. Sci. Rep. 3, 1233 (2013). https://doi.org/10.1038/srep01233

    Article  ADS  Google Scholar 

  175. Y. Wu, D. Mou, N.H. Jo, K. Sun, L. Huang, S.L. Budko, P.C. Canfield, A. Kaminski, Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 94, 121113 (2016). https://doi.org/10.1103/PhysRevB.94.121113

    Article  ADS  Google Scholar 

  176. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009). https://doi.org/10.1038/nphys1274

    Article  Google Scholar 

  177. J. Xiong, S.K. Kushwaha, T. Liang, J.W. Krizan, M. Hirschberger, W. Wang, R.J. Cava, N.P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015). https://doi.org/10.1126/science.aac6089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  178. N. Xu, X. Shi, P.K. Biswas, C.E. Matt, R.S. Dhaka, Y. Huang, N.C. Plumb, M. Radović, J.H. Dil, E. Pomjakushina, K. Conder, A. Amato, Z. Salman, D.M. Paul, J. Mesot, H. Ding, M. Shi, Surface and bulk electronic structure of the strongly correlated system SmB6 and implications for a topological Kondo insulator. Phys. Rev. B 88, 121102 (2013). https://doi.org/10.1103/PhysRevB.88.121102

    Article  ADS  Google Scholar 

  179. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). https://doi.org/10.1126/science.aaa9297

    Article  ADS  Google Scholar 

  180. S.-Y. Xu, I. Belopolski, D.S. Sanchez, M. Neupane, G. Chang, K. Yaji, Z. Yuan, C. Zhang, K. Kuroda, G. Bian, C. Guo, H. Lu, T.-R. Chang, N. Alidoust, H. Zheng, C.-C. Lee, S.-M. Huang, C.-H. Hsu, H.-T. Jeng, A. Bansil, T. Neupert, F. Komori, T. Kondo, S. Shin, H. Lin, S. Jia, M.Z. Hasan, Spin polarization and texture of the fermi arcs in the Weyl fermion semimetal TaAs. Phys. Rev. Lett. 116, 096801 (2016). https://doi.org/10.1103/PhysRevLett.116.096801

    Article  ADS  Google Scholar 

  181. S.-Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J.D. Denlinger, Y.J. Wang, H. Lin, L.A. Wray, G. Landolt, B. Slomski, J.H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F.C. Chou, R.J. Cava, A. Bansil, M.Z. Hasan, Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun. 3, 1192 (2012). https://doi.org/10.1038/ncomms2191

    Article  Google Scholar 

  182. S.-Y. Xu, C. Liu, S.K. Kushwaha, T.-R. Chang, J.W. Krizan, R. Sankar, C.M. Polley, J. Adell, T. Balasubramanian, K. Miyamoto, N. Alidoust, G. Bian, M. Neupane, I. Belopolski, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, F.C. Chou, T. Okuda, A. Bansil, R.J. Cava, M.Z. Hasan, Observation of a bulk 3D Dirac multiplet, Lifshitz transition, and nestled spin states in Na3Bi (2013). arXiv:13127624 Cond-Mat

    Google Scholar 

  183. S.-Y. Xu, C. Liu, S.K. Kushwaha, R. Sankar, J.W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P.P. Shibayev, F.-C. Chou, R.J. Cava, M.Z. Hasan, Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2015). https://doi.org/10.1126/science.1256742

    Article  ADS  Google Scholar 

  184. S.-Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. Andrew Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sánchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. Hugo Dil, J. Osterwalder, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, N. Samarth, M. Zahid Hasan, Hedgehog spin texture and Berry/’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012). https://doi.org/10.1038/nphys2351

    Article  Google Scholar 

  185. S.-Y. Xu, L.A. Wray, Y. Xia, R. Shankar, A. Petersen, A. Fedorov, H. Lin, A. Bansil, Y.S. Hor, D. Grauer, R.J. Cava, M.Z. Hasan, Discovery of several large families of Topological Insulator classes with backscattering-suppressed spin-polarized single-Dirac-cone on the surface (2010). arXiv:1007.5111

  186. S.-Y. Xu, Y. Xia, L.A. Wray, S. Jia, F. Meier, J.H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R.J. Cava, M.Z. Hasan, Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011). https://doi.org/10.1126/science.1201607

    Article  ADS  Google Scholar 

  187. Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013). https://doi.org/10.1103/PhysRevLett.111.136804

    Article  ADS  Google Scholar 

  188. K. Yada, M. Sato, Y. Tanaka, T. Yokoyama, Surface density of states and topological edge states in noncentrosymmetric superconductors. Phys. Rev. B 83, 064505 (2011). https://doi.org/10.1103/PhysRevB.83.064505

    Article  ADS  Google Scholar 

  189. B. Yan, C.-X. Liu, H.-J. Zhang, C.-Y. Yam, X.-L. Qi, T. Frauenheim, S.-C. Zhang, Theoretical prediction of topological insulators in thallium-based III-V-VI2 ternary chalcogenides. EPL Europhys. Lett. 90, 37002 (2010). https://doi.org/10.1209/0295-5075/90/37002

    Article  ADS  Google Scholar 

  190. B.-J. Yang, Y.B. Kim, Topological insulators and metal-insulator transition in the pyrochlore iridates. Phys. Rev. B 82, 085111 (2010). https://doi.org/10.1103/PhysRevB.82.085111

    Article  ADS  Google Scholar 

  191. B.-J. Yang, N. Nagaosa, Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, ncomms5898 (2014). https://doi.org/10.1038/ncomms5898

    Article  Google Scholar 

  192. F. Yang, C.-C. Liu, Y.-Z. Zhang, Y. Yao, D.-H. Lee, Time-reversal-invariant topological superconductivity in n-doped BiH. Phys. Rev. B 91, 134514 (2015). https://doi.org/10.1103/PhysRevB.91.134514

    Article  ADS  Google Scholar 

  193. K.-Y. Yang, Y.-M. Lu, Y. Ran, Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011). https://doi.org/10.1103/PhysRevB.84.075129

    Article  ADS  Google Scholar 

  194. L.X. Yang, Z.K. Liu, Y. Sun, H. Peng, H.F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y.F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.-K. Mo, C. Felser, B. Yan, Y.L. Chen, Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015). https://doi.org/10.1038/nphys3425

    Article  Google Scholar 

  195. S.A. Yang, H. Pan, F. Zhang, Dirac and Weyl superconductors in three dimensions. Phys. Rev. Lett. 113, 046401 (2014). https://doi.org/10.1103/PhysRevLett.113.046401

    Article  ADS  Google Scholar 

  196. Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Spin-orbit gap of graphene: first-principles calculations. Phys. Rev. B 75, 041401 (2007). https://doi.org/10.1103/PhysRevB.75.041401

    Article  ADS  Google Scholar 

  197. M.W. Young, S.-S. Lee, C. Kallin, Fractionalized quantum spin Hall effect. Phys. Rev. B 78, 125316 (2008). https://doi.org/10.1103/PhysRevB.78.125316

    Article  ADS  Google Scholar 

  198. S.M. Young, S. Zaheer, J.C.Y. Teo, C.L. Kane, E.J. Mele, A.M. Rappe, Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012). https://doi.org/10.1103/PhysRevLett.108.140405

    Article  ADS  Google Scholar 

  199. I. Zeljkovic, Y. Okada, C.-Y. Huang, R. Sankar, D. Walkup, W. Zhou, M. Serbyn, F. Chou, W.-F. Tsai, H. Lin, A. Bansil, L. Fu, M.Z. Hasan, V. Madhavan, Mapping the unconventional orbital texture in topological crystalline insulators. Nat. Phys. 10, 572–577 (2014). https://doi.org/10.1038/nphys3012

    Article  Google Scholar 

  200. I. Zeljkovic, D. Walkup, B.A. Assaf, K.L. Scipioni, R. Sankar, F. Chou, V. Madhavan, Strain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films. Nat. Nanotechnol. 10, 849–853 (2015). https://doi.org/10.1038/nnano.2015.177

    Article  ADS  Google Scholar 

  201. F. Zhang, C.L. Kane, E.J. Mele, Topological mirror superconductivity. Phys. Rev. Lett. 111, 056403 (2013). https://doi.org/10.1103/PhysRevLett.111.056403

    Article  ADS  Google Scholar 

  202. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438 (2009). https://doi.org/10.1038/nphys1270

    Article  Google Scholar 

  203. J. Zhang, C.-Z. Chang, P. Tang, Z. Zhang, X. Feng, K. Li, L. Wang, X. Chen, C. Liu, W. Duan, K. He, Q.-K. Xue, X. Ma, Y. Wang, Topology-driven magnetic quantum phase transition in topological insulators. Science 339, 1582–1586 (2013). https://doi.org/10.1126/science.1230905

    Article  ADS  Google Scholar 

  204. J. Zhang, C.-Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q.-K. Xue, X. Ma, Y. Wang, Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011). https://doi.org/10.1038/ncomms1588

    Article  Google Scholar 

  205. Q. Zhang, Z. Zhang, Z. Zhu, U. Schwingenschlögl, Y. Cui, Exotic topological insulator states and topological phase transitions in Sb2Se3–Bi2Se3 heterostructures. ACS Nano 6, 2345–2352 (2012). https://doi.org/10.1021/nn2045328

    Article  Google Scholar 

  206. B.B. Zhou, S. Misra, E.H. da Silva Neto, P. Aynajian, R.E. Baumbach, J.D. Thompson, E.D. Bauer, A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5. Nat. Phys. 9, 474–479 (2013). https://doi.org/10.1038/nphys2672

    Article  Google Scholar 

  207. X. Zhou, C. Fang, W.-F. Tsai, J. Hu, Theory of quasiparticle scattering in a two-dimensional system of helical Dirac fermions: Surface band structure of a three-dimensional topological insulator. Phys. Rev. B 80, 245317 (2009). https://doi.org/10.1103/PhysRevB.80.245317

    Article  ADS  Google Scholar 

Download references

Acknowledgements

W.F.T. is supported by the National Thousand-Young-Talents Program, China. The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Bansil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsai, WF., Lin, H., Bansil, A. (2018). Topological Phases of Quantum Matter. In: Gupta, S., Saxena, A. (eds) The Role of Topology in Materials. Springer Series in Solid-State Sciences, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-76596-9_6

Download citation

Publish with us

Policies and ethics