Skip to main content

Topologically Non-trivial Magnetic Skyrmions in Confined Geometries

  • Chapter
  • First Online:
The Role of Topology in Materials

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 189))

  • 2499 Accesses

Abstract

Magnetic skyrmion is a small magnetic whirl that possesses non-trivial topology and behaves like a particle. The specially twisted spin arrangement within skyrmion gives rise to topological stability and low critical current to drive its motion, both of them benefit the potential technological application in memory devices. In this chapter, we briefly introduce the notation of topology of magnetic skyrmions and recent progress ranging from the hard disk storage in conventional magnetic memory device to racetrack memory by using magnetic skyrmions. The related magnetic phases in skyrmion materials based on the Dzyaloshinskii-Moriya (DM) interactions are discussed in detail. Furthermore, experimental achievements for the formation and stability of highly geometry-confined skyrmions are outlined, where the topological effects are fully embodied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Weller, A. Moser, IEEE Trans. Mag. 35, 4423 (1999)

    Article  ADS  Google Scholar 

  2. A. Brataas, A.D. Kent, H. Ohno, Nat. Mater. 11, 372–381 (2012) (and reference therein)

    Google Scholar 

  3. S. Parkin, S.-H. Yang, Nat. Nanotechnol. 10, 195 (2015)

    Article  ADS  Google Scholar 

  4. H.B. Braun, Adv. Phys. 61(1), 1–116 (2012)

    Article  ADS  Google Scholar 

  5. O. Tchernyshyov, G.W. Chern, Phys. Rev. Lett. 95, 197204 (2005)

    Article  ADS  Google Scholar 

  6. L. Thomas, M. Hayashi, R. Moriya, C. Rettner, S. Parkin, Nat. Commun. 3, 810 (2012)

    Article  ADS  Google Scholar 

  7. T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962)

    Article  MathSciNet  Google Scholar 

  8. S. Mühlbauer, B. Binz, F. Jonietz, C. Peiderer et al., Science 323, 915 (2009)

    Article  ADS  Google Scholar 

  9. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park et al., Nature 465, 901 (2010)

    Article  ADS  Google Scholar 

  10. N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 8, 899–911 (2013)

    Article  ADS  Google Scholar 

  11. S. Rohart, J. Miltat, A. Thiaville, Phys. Rev. B 93, 214412 (2016)

    Article  ADS  Google Scholar 

  12. P. Milde, D. Köhler, J. Seidel, L.M. Eng et al., Science 340, 1076–1080 (2013)

    Article  ADS  Google Scholar 

  13. M. Lee, W. Kang, Y. Onose, Y. Tokura et al., Phys. Rev. Lett. 102, 186601 (2009)

    Article  ADS  Google Scholar 

  14. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch et al., Phys. Rev. Lett. 102, 186602 (2009)

    Article  ADS  Google Scholar 

  15. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama et al., Phys. Rev. Lett. 106, 156603 (2011)

    Article  ADS  Google Scholar 

  16. W.J. Jiang, X.C. Zhang, G.Q. Yu, W. Zhang et al., Nat. Phys. 13, 162–169 (2017)

    Article  Google Scholar 

  17. K. Litzius, I. Lemesh, B. Krüger, P. Bassirian et al., Nat. Phys. 13, 170–175 (2017)

    Article  Google Scholar 

  18. A. Fert, V. Cros, J. Sampaio, Nat. Nanotechnol. 8, 152–156 (2013)

    Article  ADS  Google Scholar 

  19. W.J. Jiang, P. Upadhyaya, W. Zhang, G.Q. Yu et al., Science 349, 283–286 (2015)

    Article  ADS  Google Scholar 

  20. U.K. Rößler, A.A. Leonov, A.N. Bogdanov, J. Phys.: Conf. Ser. 303, 012105 (2011)

    Google Scholar 

  21. T. Okubo, S. Chung, H. Kawamura, Phys. Rev. Lett. 108, 017206 (2012)

    Article  ADS  Google Scholar 

  22. S. Heinze, K. von Bergmann, M. Menzel, J. Brede et al., Nat. Phys. 7, 713 (2011)

    Article  Google Scholar 

  23. K. Shibata, X.Z. Yu, T. Hara, D. Morikawa et al., Nat. Nanotechnol. 8, 723 (2013)

    Article  ADS  Google Scholar 

  24. H.F. Du, R.C. Che, L.Y. Kong, X.B. Zhao et al., Nat. Commun. 6, 8504 (2015)

    Article  Google Scholar 

  25. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  26. X.Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto et al., Nat. Mater. 10, 106 (2011)

    Article  ADS  Google Scholar 

  27. F.N. Rybakov, A.B. Borisov, A.N. Bogdanov, Phys. Rev. B 87, 094424 (2013)

    Article  ADS  Google Scholar 

  28. X.Z. Yu, J.P. DeGrave, Y. Hara, T. Hara et al., Nano Lett. 13, 3755–3759 (2013)

    Article  ADS  Google Scholar 

  29. A.B. Butenko, A.A. Leonov, U.K. Roessler, A.N. Bogdanov, Phys. Rev. B 82, 052403 (2010)

    Article  ADS  Google Scholar 

  30. M.N. Wilson, E.A. Karhu, A.S. Quigley, U.K. Rößler et al., Phys. Rev. B 86, 144420 (2012)

    Article  ADS  Google Scholar 

  31. S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Science 336, 198 (2012)

    Article  ADS  Google Scholar 

  32. A.N. Bogdanov, D.A. Yablonskii, Sov. Phys. JETP 68, 101 (1989)

    Google Scholar 

  33. R.R.Birss, Symmetry and Magnetism, vol. III (North-Holland Publishing Company, 1964)

    Google Scholar 

  34. A.N. Bogdanov, A. Hubert, Phys. Status Solidi B 186, 527 (1994)

    Article  ADS  Google Scholar 

  35. W. Li, C.M. Jin, R.C. Che, W.S. Wei et al., Phys. Rev. B 93, 060409 (2016)

    Article  ADS  Google Scholar 

  36. A.N. Bogdanov, A. Hubert, J. Magn. Magn. Mater. 195, 182 (1995)

    Article  ADS  Google Scholar 

  37. A.N. Bogdanov, A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994)

    Article  ADS  Google Scholar 

  38. W.S. Wei, G.J. Zhao, D.R. Kim, C.M. Jin et al., Phys. Rev. B 94, 104503 (2016)

    Article  ADS  Google Scholar 

  39. See the details in the internet: http://www.fei.com/products/dualbeam/helios-nanolab

  40. D.C. Beaulieu, Electron beam chemical vapor deposition of platinum and carbon. The thesis for degree master (2005)

    Google Scholar 

  41. F. Büttner, C. Moutafis, M. Schneider, B. Krüger et al., Nat. Phys. 11, 225–228 (2015)

    Article  Google Scholar 

  42. J.N. Chapman, J. Phys. D: Appl. Phys. 17, 623–647 (1984)

    Article  ADS  Google Scholar 

  43. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009)

    Book  Google Scholar 

  44. J.N. Chapman, M.R. Scheinfein, J. Magn. Magn. Mater. 200, 729–740 (1999)

    Article  ADS  Google Scholar 

  45. D. Cortés-Ortuño, W. Wang, M. Beg, R.A. Pepper, et al. arXiv:1611.07079 (2016)

    Google Scholar 

  46. M.N. Wilson, E.A. Karhu, D.P. Lake, A.S. Quigley et al., Phys. Rev. B 88(21), 214420 (2013)

    Article  ADS  Google Scholar 

  47. M. Ezawa, Phys. Rev. B 83(10), 100408(R) (2011)

    Article  ADS  MathSciNet  Google Scholar 

  48. A.O. Leonov, U.K. Rößler, M. Mostovoy, EPJ Web Conf. 75, 05002 (2014)

    Article  Google Scholar 

  49. X.B. Zhao, C.M. Jin, C. Wang, H.F. Du et al., PNAS 113, 18 (2016)

    Google Scholar 

  50. H. Wilhelm, M. Baenitz, M. Schmidt, U.K. Rossler et al., Phys. Rev. Lett. 107, 127203 (2011)

    Article  ADS  Google Scholar 

  51. X. Zhang, G.P. Zhao, H. Fangohr, J.P. Liu et al., Sci. Rep. 5, 7643 (2015)

    Article  Google Scholar 

  52. H.F. Du, D. Liang, C.M. Jin, L.Y. Kong et al., Nat. Commun. 6, 7637 (2015)

    Article  Google Scholar 

  53. H.F. Du, W. Ning, M.L. Tian, Y.H. Zhang, Phys. Rev. B 87(1), 014401 (2013)

    Article  ADS  Google Scholar 

  54. H.F. Du, Z.A. Li, A. Kovacs, J. Caron et al., Nat. Commun. 8, 15569 (2017)

    Article  ADS  Google Scholar 

  55. J. Sampaio, V. Cros, S. Rohart, A. Thiaville et al., Nat. Nanotechnol. 8, 839 (2013)

    Article  ADS  Google Scholar 

  56. J. Iwasaki, M. Mochizuki, N. Nagaosa, Nat. Nanotechnol. 8, 742 (2013)

    Article  ADS  Google Scholar 

  57. S.A. Meynell, M.N. Wilson, H. Fritzsche, A.N. Bogdanov et al., Phys. Rev. B 90, 014406 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China, Grant No. 2017YFA0303201; the Key Research Program of the Chinese Academy of Science, KJZD-SW-M01; the Natural Science Foundation of China, Grant No. 51622105, 11474290; the Key Research Program of Frontier Sciences, CAS, Grant No. QYZDB-SSW-SLH009; the Youth Innovation Promotion Association CAS No. 2015267; the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology Grant No. 2016FXCX001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, H., Tian, M. (2018). Topologically Non-trivial Magnetic Skyrmions in Confined Geometries. In: Gupta, S., Saxena, A. (eds) The Role of Topology in Materials. Springer Series in Solid-State Sciences, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-76596-9_5

Download citation

Publish with us

Policies and ethics