Skip to main content

Optical Sensing Based on Rare-Earth-Doped Tellurite Glasses

  • Chapter
  • First Online:
  • 637 Accesses

Abstract

Tellurite glasses are among the most interesting host matrices for various optical applications. The excellent optical and thermal properties of tellurite glasses are due to their high linear and nonlinear refractive indices, good transparency window, low phonon energy, high rare-earth solubility, and thermal stability. One of the promising applications of tellurite glasses is in optical thermometry. In this chapter, we review the fundaments of thermometry by luminescence spectroscopy, the theoretical background to calculate the thermal sensibility of rare-earth ion-doped materials, and some examples of the thermometry done on tellurite glasses as well as some other host matrices. For example, Er3+-doped tellurite glasses are given as thermal sensors applied in the visible spectral region, where the fluorescent intensity ratio of two green emission bands plays the role to optically determine the temperature. On the other hand, Nd3+ ion-doped glasses could be used to measure the temperature in the near-infrared region, using the intensity ratio variations of principal emissions in the 800–1400 nm spectral range. Thermal sensibility of each case is compared to various glass host compositions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. X. Huang, J. Lin, J. Mater. Chem. C 3, 7652–7657 (2015)

    Article  Google Scholar 

  2. C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Mill, V.S. Amaral, D. Carlos, Nanoscale 4, 4799–4829 (2012)

    Article  ADS  Google Scholar 

  3. D. Jaque, F. Vetrone, Nanoscale 4, 4301–4326 (2012)

    Article  ADS  Google Scholar 

  4. A.F. Pereira, J.F. Silva, A.S. Gouveia-Neto, C. Jacinto, Sensors Actuators B Chem. 238, 525–531 (2017)

    Article  Google Scholar 

  5. C. Ximendes, U. Rocha, T.O. Sales, N. Fernández, F. Sanz-Rodríguez, I.R. Martín, C. Jacinto, D. Jaque, Adv. Funct. Mater. 27, 1702249 (2017)

    Article  Google Scholar 

  6. E.C. Ximendes, W.Q. Santos, U. Rocha, U.K. Kagola, F. Sanz-Rodríguez, N. Fernández, A.D.S. Gouveia-Neto, D. Bravo, A.M. Domingo, B. Del Rosal, C.D.S. Brites, L.D. Carlos, D. Jaque, C. Jacinto, Nano Lett. 16, 1695–1703 (2016)

    Article  ADS  Google Scholar 

  7. L.D. Carlos, F. Palacio, Thermometry at the Nanoscale: Techniques and Selected Applications (Royal Society of Chemistry, Cambridge, UK, 2015)

    Google Scholar 

  8. J.F. Gillooly, J.H. Brown, G.B. West, V.M. Savage, E.L. Charnov, Science (80-. ) 293, 2248–2251 (2001)

    Article  ADS  Google Scholar 

  9. U. Rocha, K. Upendra Kumar, C. Jacinto, J. Ramiro, A.J. Caamarro, J. Garcia Sole, D. Jaque, Appl. Phys. Lett. 104, 2012–2017 (2014)

    Article  Google Scholar 

  10. E. Carrasco, B. Del Rosal, F. Sanz-Rodríguez, Á.J. De La Fuente, P.H. Gonzalez, U. Rocha, K.U. Kumar, C. Jacinto, J.G. Solé, D. Jaque, Adv. Funct. Mater. 25, 615–626 (2015)

    Article  Google Scholar 

  11. D. Jaque, C. Jacinto, J. Lumin. 169, 394–399 (2016)

    Article  Google Scholar 

  12. E.C. Ximendes, U. Rocha, C. Jacinto, K.U. Kumar, D. Bravo, F.J. López, E.M. Rodríguez, J. García-Soléb, D. Jaque, Nanoscale 8, 3057–3066 (2016)

    Article  ADS  Google Scholar 

  13. E.C. Ximendes, U. Rocha, K.U. Kumar, C. Jacinto, D. Jaque, Appl. Phys. Lett. 108, 253103 (2016)

    Article  ADS  Google Scholar 

  14. H. Berthou, C.K. Jörgensen, Opt. Lett. 15, 1100–1102 (1990)

    Article  ADS  Google Scholar 

  15. K.U. Kumar, W.Q. Santos, W.F. Silva, C. Jacinto, J. Nanosci. Nanotechnol. 13, 6841–6845 (2013)

    Article  Google Scholar 

  16. E. Saïdi, B. Samson, L. Aigouy, S. Volz, P. Löw, C. Bergaud, M. Mortier, Nanotechnology 20, 115703/1–115703/8 (2009)

    Article  ADS  Google Scholar 

  17. C. Pérez-Rodríguez, L.L. Martín, S.F. León-Luis, I.R. Martín, Sensors Actuators B Chem. 195, 324–331 (2014)

    Article  Google Scholar 

  18. S.F. León-Luis, U.R. Rodríguez-Mendoza, P. Haro-González, I.R. Martín, V. Lavín, Sensors Actuators B Chem. 174, 176–186 (2012)

    Article  Google Scholar 

  19. A.F. Pereira, K.U. Kumar, W.F. Silva, W.Q. Santos, D. Jaque, C. Jacinto, Sensors Actuators B Chem. 213, 65–71 (2015)

    Article  Google Scholar 

  20. V.K. Rai, Appl. Phys. B Lasers Opt. 88, 297–303 (2007)

    Article  MathSciNet  Google Scholar 

  21. S.A. Wade, S.F. Collins, G.W. Baxter, J. Appl. Phys. 94, 4743 (2007)

    Article  ADS  Google Scholar 

  22. A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G.A. Hirata, F. Vetrone, Adv. Opt. Mater. 3, 687–694 (2015)

    Article  Google Scholar 

  23. E.N. Cerõn, D.H. Ortgies, B. Del Rosal, F. Ren, A. Benayas, F. Vetrone, D. Ma, F. Sanz-Rodríguez, J.G. Solé, D. Jaque, E.M. Rodríguez, Adv. Mater. 27, 4781–4787 (2015)

    Article  Google Scholar 

  24. A.K. Kewell, G.T. Reed, F. Namavar, Sensors Actuators 65, 160–164 (1998)

    Google Scholar 

  25. Z.P. Cai, H.Y. Xu, Sensors Actuators A Phys. 108, 187–192 (2003)

    Article  Google Scholar 

  26. B.A. Weinstein, Rev. Sci. Instrum. 57, 910–913 (1986)

    Article  ADS  Google Scholar 

  27. V.K. Rai, S.B. Rai, Appl. Phys. B Lasers Opt. 87, 323–325 (2007)

    Article  MathSciNet  Google Scholar 

  28. P.V. Dos Santos, M.T. de Araujo, A.S. Gouveia-Neto, J.A. Medeiros Neto, A.S.B. Sombra, IEEE J. Quantum Electron. 35, 395–399 (1999)

    Article  ADS  Google Scholar 

  29. M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, P. Miluski, J. Lumin. 151, 155–160 (2014)

    Article  Google Scholar 

  30. E.A. Lalla, S.F. León-Luis, V. Monteseguro, C. Pérez-Rodríguez, J.M. Cáceres, J. Lumin. 166, 209–214 (2015)

    Article  Google Scholar 

  31. V.K. Rai, IEEE Sensors J. 7, 1110–1111 (2007)

    Article  Google Scholar 

  32. V.K. Rai, D.K. Rai, S.B. Rai, Sensors Actuators A Phys. 128, 14–17 (2006)

    Article  Google Scholar 

  33. H. Kusama, O.J. Sovers, T. Yoshioka, Jpn. J. Appl. Phys. 15, 2349–2358 (1976)

    Article  ADS  Google Scholar 

  34. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, J.A. Capobianco, ACS Nano 4, 3254–3258 (2010)

    Article  Google Scholar 

  35. R.A.H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data, 1st edn. (CRC Press, Boca Raton, 2002.), 2.nd Ed. (2011)

    MATH  Google Scholar 

  36. M.R. Dousti, R.J. Amjad, M.R. Sahar, Z.M. Zabidi, A.N. Alias, A.S.S. De Camargo, J. Non-Cryst. Solids 429, 70–78 (2015)

    Article  ADS  Google Scholar 

  37. I. Jlassi, H. Elhouichet, M. Ferid, C. Barthou, J. Lumin. 130, 2394–2401 (2010)

    Article  Google Scholar 

  38. R. El-Mallawany, J. Appl. Phys. 72, 1774 (1992)

    Article  ADS  Google Scholar 

  39. H. Zhan, A. Zhang, J. He, Z. Zhou, J. Si, A. Lin, Appl. Opt. 52, 9–11 (2013)

    Article  Google Scholar 

  40. S.F. León-Luis, U.R. Rodríguez-Mendoza, E. Lalla, V. Lavín, Sensors Actuators B Chem. 158, 208–213 (2011)

    Article  Google Scholar 

  41. S.F. León-Luis, U.R. Rodríguez-Mendoza, P. Haro-González, I.R. MartÚn, V. Lavín, Chem. Sensors Actuators B 174, 176–186 (2012)

    Google Scholar 

  42. G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, W. Cao, RSC Adv. 6, 11795–11801 (2016)

    Article  Google Scholar 

  43. X. Huang, B. Li, C. Peng, G. Song, Y. Peng, Z. Xiao, X. Liu, J. Yang, L. Yu, J. Hu, Nanoscale 8, 1040–1048 (2016)

    Article  ADS  Google Scholar 

  44. A. Pandey, V.K. Rai, V. Kumar, V. Kumar, H.C. Swart, Sensors Actuators B Chem. 209, 352–358 (2015)

    Article  Google Scholar 

  45. O.I.A. Savchuk, J.J. Carvajal, C. Cascales, M. Aguiló, F. Díaz, Appl. Mater. Interfaces 8, 7266–7273 (2016)

    Article  Google Scholar 

  46. A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmera, F. Vetrone, Nanoscale 9, 3079–3085 (2017)

    Article  Google Scholar 

  47. X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, X. Yan, RSC Adv. 5, 86219–86236 (2015)

    Article  Google Scholar 

  48. X. Li, Y. Yu, Z. Zheng, Ceram. Int. 42, 490–494 (2015)

    Article  Google Scholar 

  49. V.K. Bogdanov, D.J. Booth, W.E.K. Gibbs, J. Non-Cryst. Solids 311, 48–53 (2002)

    Google Scholar 

  50. L. E. K. A. Gschneidner Jr. (ed.), Handbook on the Physics and Chemistry of Rare Earths (Elsevier Science Publisher, Cambridge, UK, 1998), pp. 101–264

    Google Scholar 

  51. S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, N. Soga, J. Appl. Phys. 73, 8451–8454 (1993)

    Article  ADS  Google Scholar 

  52. D. Manzani, J.F.d.S. Petruci, K. Nigoghossian, A.A. Cardoso, S.J.L. Ribeiro, Sci. Rep. 7, 41596 (2017)

    Article  ADS  Google Scholar 

  53. S.F. León-Luis, U.R. Rodríguez-Mendoza, I.R. Martín, E. Lalla, V. Lavín, Sensors Actuators B Chem. 176, 1167–1175 (2013)

    Article  Google Scholar 

  54. F. Auzel, Energy Transfer and Migration of Excitation in Solids and Confined Structures. In: B. di Bartolo (ed.), Spectroscopy and dynamics of collective excitations in solids (Plenum Press, New York; London, 1997), pp. 1–559

    Chapter  Google Scholar 

  55. F. Auzel, P. Goldner, G.F. De Sa, J. Non-Cryst. Solids 265, 185–189 (2000)

    Article  ADS  Google Scholar 

  56. P.V. dos Santos, M.T. De Araujo, A.S. Gouveia-Neto, J.A. Medeiros Neto, A.S.B. Sombra, Appl. Phys. Lett. 73 (1998). https://doi.org/10.1063/1.121861

  57. K. Annapoorani, N. Suriya Murthy, T.R. Ravindran, K. Marimuthu, J. Lumin. 171, 19–23 (2016)

    Article  Google Scholar 

  58. G.Z. Sui, X.P. Li, L.H. Cheng, J.S. Zhang, J.S. Sun, H.Y. Zhong, Y. Tian, S.B. Fu, B.J. Chen, Appl. Phys. B Lasers Opt. 110(4), 471–476 (2013)

    Google Scholar 

  59. N. Vijaya, P. Babu, V. Venkatramu, C.K. Jayasankar, S.F. León-Luis, U.R. Rodríguez-Mendoza, I.R. Martín, V. Lavín, Sensors Actuators B Chem. 186, 156–164 (2013)

    Article  Google Scholar 

  60. P. Haro-González, S.F. León-Luis, S. González-Pérez, I.R. Martín, Mater. Res. Bull. 46, 1051–1054 (2011)

    Article  Google Scholar 

  61. P. Haro-González, I.R. Martín, L.L. Martín, S.F. León-Luis, C. Pérez-Rodríguez, V. Lavín, Opt. Mater. (Amst). 33, 742–745 (2011)

    Article  ADS  Google Scholar 

  62. W.A. Pisarski, J. Pisarska, R. Lisiecki, W. Ryba-Romanowski, Opt. Mater. (Amst). 59, 87–90 (2016)

    Article  ADS  Google Scholar 

  63. A.S.S. De Camargo, J.F. Possatto, L.A.D.O. Nunes, E.R. Botero, E.R.M. Andreeta, D. Garcia, J.A. Eiras, Solid State Commun. 137, 1–5 (2006)

    Article  ADS  Google Scholar 

  64. P. Du, L.H. Luo, W.P. Li, Q. Yue, H. Chen, Appl. Phys. Lett. 104, 152902 (2014)

    Article  ADS  Google Scholar 

  65. A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. Kumar, H.C. Swart, Sensors Actuators B Chem. 202, 1305–1312 (2014)

    Article  Google Scholar 

  66. B. Lai, L. Feng, J. Wang, Q. Su, Opt. Mater. (Amst). 32, 1154–1160 (2010)

    Article  ADS  Google Scholar 

  67. C. Li, B. Dong, S. Li, C. Song, Chem. Phys. Lett. 443, 426–429 (2007)

    Article  ADS  Google Scholar 

  68. P. Du, J.S. Yu, Ceram. Int. 41, 6710–6714 (2015)

    Article  Google Scholar 

  69. P. Du, L.H. Luo, W. Li, Q. Yue, J. Appl. Phys. 116, 14102 (2014)

    Article  Google Scholar 

  70. R.K. Kumar Rai, Sensors Actuators B Chem. 210, 581–588 (2015)

    Article  Google Scholar 

  71. W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, W. Cao, Sensors Actuators B Chem. 188, 1096–1100 (2013)

    Article  Google Scholar 

  72. O.A. Savchuk, J.J. Carvajal, M.C. Pujol, E.W. Barrera, J. Massons, M. Aguilo, F. Diaz, J. Phys. Chem. C 119, 18546–18558 (2015)

    Article  Google Scholar 

  73. S. Ćulubrk, V. Lojpur, S.P. Ahrenkiel, J.M. Nedeljković, M.D. Dramićanin, J. Lumin. 170, 395–400 (2016)

    Google Scholar 

  74. U. Rocha, C. Jacinto da Silva, W.F. Silva, I. Guedes, A. Benayas, L.M. Maestro, M.A. Elias, E. Bovero, F.C.J.M. van Veggel, J.A.G. Solé, D. Jaque, Subtissue thermal sensing based on meodymium-doped LaF nanoparticles. ACS Nano 7(2), 1188–1199 (2013)

    Article  Google Scholar 

  75. U. Rocha, K.U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M.d.C.I. de la Cruz, A. Juarranz, E. Carrasco, F.C.J.M. van Veggel, E. Bovero, J.G. Solé, D. Jaque, Neodymium-doped LaF nanoparticles for fluorescence bioimaging in the second biological window. Small 10(6), 1141–1154 (2014)

    Article  Google Scholar 

  76. I. Villa, A. Vedda, I.X. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F.S. Rodríguez, Á. Juarranz, B. del Rosal, D.H. Ortgies, P.H. Gonzalez, J.G. Solé, D. Jaque, 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res. 8(2), 649–665 (2015)

    Article  Google Scholar 

  77. E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á.J. de la Fuente, P.H. Gonzalez, U. Rocha, K.U. Kumar, C. Jacinto, J.G. Solé, D. Jaque, Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 25(4), 615–626 (2015)

    Article  Google Scholar 

  78. B. del Rosal, A. Pérez-Delgado, M. Misiak, A. Bednarkiewicz, A.S. Vanetsev, Y. Orlovskii, D.J. Jovanović, M.D. Dramićanin, U. Rocha, K.U. Kumar, C. Jacinto, E. Navarro, E.M. Rodríguez, M. Pedroni, A. Speghini, G.A. Hirata, I.R. Martín, D. Jaque, Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host. J. Appl. Phys. 118(14), 143104 (2015)

    Article  ADS  Google Scholar 

  79. I.E. Kolesnikov, E.V. Golyeva, A.A. Kalinichev, M.A. Kurochkin, E. Lähderant, M.D. Mikhailov, Sensors Actuators B Chem. 243, 338–345 (2017)

    Article  Google Scholar 

  80. S. Balabhadra, M.L. Debasu, C.D.S. Brites, L.A.O. Nunes, O.L. Malta, J. Rocha, M. Bettinellie, L.D. Carlos, Nanoscale 7, 17261–17267 (2015)

    Article  ADS  Google Scholar 

  81. M. Sobczyk, J. Quant. Spectrosc. Radiat. Transf. 119, 128–136 (2013)

    Article  ADS  Google Scholar 

  82. W. Xu, H. Zhao, Z.G. Zhang, W.W. Cao, Sensors Actuators B Chem. 178, 520–524 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Brazilian funding agencies for the support of this research: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FINEP (Financiadora de Estudos e Projetos) by means of CT-INFRA projects (INFRAPESQ-11 and INFRAPESQ-12), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) Grant PNPD-CAPES, and FAPEAL (Fundação de Amparo à Pesquisa do Estado de Alagoas), Grant 60030-000384/2017. W. Q. Santos is supported by a postdoctoral fellowship grant from CAPES (PNPD program). The authors are thankful to Prof. R. El-Mallawany, the editor of this book, for his kind invitation to contribute to this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reza Dousti, M., Santos, W.Q., Jacinto, C. (2018). Optical Sensing Based on Rare-Earth-Doped Tellurite Glasses. In: El-Mallawany, R. (eds) Tellurite Glass Smart Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-76568-6_8

Download citation

Publish with us

Policies and ethics