Skip to main content

Structural and Luminescence Properties of Tellurite Glasses for Laser Applications

  • Chapter
  • First Online:
  • 595 Accesses

Abstract

In this chapter we will discuss in detail about structural and luminescence properties of heavy metal oxide-based TeO2 glasses incorporated by rare-earth ions. The glasses were developed by conventional melt quenching method, and the structural analysis was done by XRD, FTIR, and Raman. The XRD patterns confirm the amorphous nature of the samples, and the FTIR characterization showed the formation of more non-bridging oxygen atoms in the glass network with the inclusion of rare-earth ions. Spectroscopic characterizations such as optical absorption, photo luminescence, and decay profile measurements were performed on the glasses. The Judd-Ofelt theory has been employed on optical absorption spectra to evaluate the Judd-Ofelt (J-O) intensity parameters Ωλ (λ = 2, 4, 6). The measured J-O intensity parameters were used to determine the emission transition probability (A R), stimulated emission cross section (σ(λ p)), branching ratios (β R), and radiative lifetimes (τ R) for various emission transitions from the excited levels of rare-earth ions in the host glass network. The obtained results showed the use of the glasses for potential applications in the field of laser technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N.S. Hussain, G. Hungerford, R. El-Mallawany, M.J.M. Gomes, M.A. Lopes, N. Ali, J.D. Santos, S. Buddhudu, Absorption and emission analysis of RE3+ (Sm3+ and Dy3+): Lithium Boro Tellurite glasses. J. Nanosci. Nanotechnol. 9(6), 3672–3677 (2009)

    Google Scholar 

  2. I.Z.Hager, R.El-Mallawany, A.Bulou, Luminescence spectra and optical properties of TeO2–WO3–Li2O glasses doped with Nd, Sm and Er rare earth ions. Phys. B Condens. Matter 406(4), 972–980 (2011)

    Google Scholar 

  3. I.Z. Hager, R. El-Mallawany, Preparation and structural studies in the (70− x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J. Mater. Sci. 45(4), 897 (2010)

    Google Scholar 

  4. M.M. El-Zaidia, A.A. Ammar, R.A. El-Mallwany, Infra-red spectra, electron spin resonance spectra, and density of (TeO2)100− x–(WO3)x and (TeO2)100− x–(ZnCl2)x glasses. Phys. Status Solidi A 91(2), 637–642 (1985)

    Google Scholar 

  5. A. Abdel-Kader, R. El-Mallawany, M.M. Elkholy, Network structure of tellurite phosphate glasses: Optical absorption and infrared spectra. J. Appl. Phys. 73(1), 71–74 (1993)

    Article  ADS  Google Scholar 

  6. R. El-Mallawany, M. Sidkey, A. Khafagy, H. Afifi, Ultrasonic attenuation of tellurite glasses. Mater. Chem. Phys. 37(2), 197–200 (1994)

    Article  Google Scholar 

  7. M.M. Elkholy, R.A. El-Mallawany, Ac conductivity of tellurite glasses. Mater. Chem. Phys. 40(3), 163–167 (1995)

    Article  Google Scholar 

  8. A. El-Adawy, R. El-Mallawany, Elastic modulus of tellurite glasses. J. Mater. Sci. Lett. 15(23), 2065–2067 (1996)

    Google Scholar 

  9. H.M.M. Moawad, H. Jain, R. El-Mallawany, T. Ramadan, M. El-Sharbiny, Electrical conductivity of silver vanadium tellurite glasses. J. Am. Ceram. Soc. 85(11), 2655–2659 (2002)

    Article  Google Scholar 

  10. R. El-Mallawany, Specific heat capacity of semiconducting glasses: Binary vanadium tellurite. Physica Status Solidi(a) 177(2), 439–444 (2000)

    Article  ADS  Google Scholar 

  11. R. El-Mallawany, A. Abd El-Moneim, Comparison between the elastic moduli of tellurite and phosphate glasses. Physica status solidi (a) 166(2), 829–834 (1998)

    Article  ADS  Google Scholar 

  12. R.S. Kundu, S. Dhankhar, R. Punia, K. Nanda, N. Kishore, Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses. J. Alloys Compd. 587, 66–73 (2014)

    Article  Google Scholar 

  13. Y. Wang, S. Dai, F. Chen, T. Xu, Q. Nie, Physical properties and optical band gap of new tellurite glasses within the TeO2–Nb2O5–Bi2O3 system. Mater. Chem. Phys. 113, 407–411 (2009)

    Article  Google Scholar 

  14. D. Linda, J.R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, et al., Optical properties of tellurite glasses elaborated within the TeO2–Tl2O–Ag2O and TeO2–ZnO–Ag2O ternary systems. J. Alloys Compd. 561, 151–160 (2013)

    Google Scholar 

  15. J.S. Wang, E.M. Vogel, E. Snitzer, Tellurite glasses: A new candidate for fiber devices. Opt. Mater. (Amst). 3, 187–203 (1994)

    Article  ADS  Google Scholar 

  16. O. Noguera, S. Suehara, High nonlinear optical properties in TeO 2 -based materials: Localized hyperpolarisability approach. Ferroelectrics 347, 162–167 (2007)

    Article  Google Scholar 

  17. S. Suehara, P. Thomas, a. Mirgorodsky, T. Merle-Méjean, J.C. Champarnaud-Mesjard, T. Aizawa, et al., Non-linear optical properties of TeO2-based glasses: Ab initio static finite-field and time-dependent calculations. J. Non-Cryst. Solids 345-346, 730–733 (2004)

    Article  ADS  Google Scholar 

  18. C. Madhukar Reddy, B. Deva Prasad Raju, N. John Sushma, N.S. Dhoble, S.J. Dhoble, A review on optical and photoluminescence studies of RE3+ (RE=Sm, Dy, Eu, Tb and Nd) ions doped LCZSFB glasses. Renew. Sust. Energ. Rev. 51, 566–584 (2015)

    Article  Google Scholar 

  19. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin, 1994)

    Book  Google Scholar 

  20. S. Tanabe, Optical transitions of rare earth ions for amplifiers: How the local structure works in glass. J. Non-Cryst. Solids 259, 1–9 (1999)

    Article  ADS  Google Scholar 

  21. K. Linganna, C. Srinivasa Rao, C.K. Jayasankar, Optical properties and generation of white light in Dy3+ doped lead phosphate glasses. J. Quant. Spectrosc. Radiat. Transf. 118, 40–48 (2013)

    Article  ADS  Google Scholar 

  22. S. Babu, V. Reddy Prasad, D. Rajesh, Y. Ratnakaram, Luminescence properties of Dy3+ doped different fluoro-phosphate glasses for solid state lighting applications. J. Mol. Struct. 1080, 153–161 (2015)

    Article  ADS  Google Scholar 

  23. S. Arunkumar, G. Venkataiah, K. Marimuthu, Spectroscopic and energy transfer behavior of Dy3+ ion in B2O3-TeO2-PbO-PbF-Bi2O3-CdO glasses for laser and WLED applications, Spectrochim. Acta Part A Mol. Biomol. Spectroscopy 136, 1684–1697 (2015)

    Article  ADS  Google Scholar 

  24. V.H. Rao, P.S. Prasad, P.V. Rao, L.F. Santos, N. Veeraiah, Influence of Sb2O3 on tellurite based glasses for photonic applications. J. Alloys Compd. 687, 898–905 (2016)

    Article  Google Scholar 

  25. A.E. Ersundu, M. Çelikbilek, S. Aydin, Characterization of B2O3 and/or WO3 containing tellurite glasses. J. Non-Cryst. Solids 358, 641–647 (2012)

    Article  ADS  Google Scholar 

  26. Y. Zhou, Y. Yang, F. Huang, J. Ren, S. Yuan, G. Chen, Characterization of new tellurite glasses and crystalline phases in the TeO2-PbO-Bi2O3-B2O3 system. J. Non-Cryst. Solids 386, 90–94 (2014)

    Article  ADS  Google Scholar 

  27. G. Upender, C. Sameera Devi, V. Kamalaker, V. Chandra Mouli, The structural and spectroscopic investigations of ternary tellurite glasses, doped with copper. J. Alloys Compd. 509, 5887–5892 (2011)

    Article  Google Scholar 

  28. M. Nalin, Y. Messaddeq, S.J.L. Ribeiro, M. Poulain, V. Briois, G. Brunklaus, C. Rosenhahn, B.D. Mosel, H. Eckert, R. Cedex, Structural organization and thermal properties of the Sb2O3 – SbPO4 glass system. J. Mater. Chem. 14, 3398–3405 (2004)

    Article  Google Scholar 

  29. T. Kentaro, T. Hashimoto, T. Uchino, A.-H. Kim, T. Yoko, Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses. J. Ceram. Soc. Japan 104, 1008–1014 (1996)

    Article  Google Scholar 

  30. S.Y. Marzouk, F.H. Elbatal, Infrared and UV–visible spectroscopic studies of gamma-irradiated Sb2O3–B2O3 glasses. J. Mol. Struct. 1063, 328–335 (2014)

    Article  ADS  Google Scholar 

  31. W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J. Chem. Phys. 90, 3443–3457 (1989)

    Article  ADS  Google Scholar 

  32. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424–4442 (1968)

    Article  ADS  Google Scholar 

  33. C.K. Jorgensen, B.R. Judd, Hypersensitive pseudoquadrupole transitions in lanthanides. Mol. Phys. 8, 281–290 (1964)

    Article  ADS  Google Scholar 

  34. S.P. Sinha, Complexes of the Rare Earths (Pergamon, Oxford, London, 1966)

    Book  Google Scholar 

  35. R.T. Karunakaran, K. Marimuthu, S. Surendra Babu, S. Arumugam, Structural, optical and thermal investigations on Dy3+ doped NaF-Li2O-B2O3 glasses. Phys. B Condens. Matter 404, 3995–4000 (2009)

    Article  ADS  Google Scholar 

  36. C.K. Jayasankar, E. Rukmini, Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses. Opt. Mater. 8, 193–205 (1997)

    Article  ADS  Google Scholar 

  37. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962)

    Article  ADS  Google Scholar 

  38. G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962)

    Article  ADS  Google Scholar 

  39. A. Mohan Babu, B.C. Jamalaiah, J. Suresh Kumar, T. Sasikala, L. Rama Moorthy, Spectroscopic and photoluminescence properties of Dy3+ −doped lead tungsten tellurite glasses for laser materials. J. Alloys Compd. 509, 457–462 (2011)

    Article  Google Scholar 

  40. G. Venkataiah, C.K. Jayasankar, Dy3+ −doped tellurite based tungsten-zirconium glasses: Spectroscopic study. J. Mol. Struct. 1084, 182–189 (2015)

    Article  ADS  Google Scholar 

  41. C.B. Annapurna Devi, S. Mahamuda, M. Venkateswarlu, K. Swapna, A. Srinivasa Rao, G. Vijaya Prakash, Dy3+ ions doped single and mixed alkali fluoro tungsten tellurite glasses for LASER and white LED applications. Opt. Mater. 62, 569–577 (2016)

    Article  ADS  Google Scholar 

  42. S.A. Saleem, B.C. Jamalaiah, M. Jayasimhadri, A. Srinivasa Rao, K. Jang, L. Rama Moorthy, Luminescent studies of Dy3+ ion in alkali lead tellurofluoroborate glasses. J. Quant. Spectrosc. Radiat. Transf. 112, 78–84 (2011)

    Article  ADS  Google Scholar 

  43. V. Uma, K. Maheshvaran, K. Marimuthu, G. Muralidharan, Structural and optical investigations on Dy3+ doped lithium tellurofluoroborate glasses for white light applications. J. Lumin. 176, 15–24 (2016)

    Article  Google Scholar 

  44. R.T. Karunakaran, K. Marimuthu, S. Surendra Babu, S. Arumugam, Dysprosium doped alkali fluoroborate glasses — Thermal , structural and optical investigations. J. Lumin. 130, 1067–1072 (2010)

    Article  Google Scholar 

  45. J. Suresh Kumar, K. Pavani, A. Mohan Babu, N.K. Giri, S.B. Rai, L. Rama Moorthy, Fluorescence characteristics of Dy3+ ions in calcium fluoroborate glasses. J. Lumin. 130, 1916–1923 (2010)

    Article  Google Scholar 

  46. N. Luewarasirikul, H.J. Kim, P. Meejitpaisan, J. Kaewkhao, White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses. Opt. Mater. 66, 559–566 (2017)

    Article  ADS  Google Scholar 

  47. L. Jyothi, G. Upender, R. Kuladeep, D. Narayana Rao, Structural, thermal, optical properties and simulation of white light of titanium-tungstate-tellurite glasses doped with dysprosium. Mater. Res. Bull. 50, 424–431 (2014)

    Article  Google Scholar 

  48. V.B. Sreedhar, D. Ramachari, C.K. Jayasankar, Optical properties of zincfluorophosphate glasses doped with Dy3+ ions. Phys. B Condens. Matter 408, 158–163 (2013)

    Article  ADS  Google Scholar 

  49. C.K. Jorgensen, R. Reisfeld, Judd-Ofelt parameters and chemical bonding. J. Less-Common Met. 93, 107–112 (1983)

    Article  Google Scholar 

  50. M. Vijayakumar, K. Marimuthu, Structural and luminescence properties of Dy3+ doped oxyfluoro-borophosphate glasses for lasing materials and white LEDs. J. Alloys Compd. 629, 230–241 (2015)

    Article  Google Scholar 

  51. H. Ebendorff-heidepriem, D. Ehrt, M. Bettinelli, A. Speghini, Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses. J. Non-Cryst. Solids 240, 66–78 (1998)

    Article  ADS  Google Scholar 

  52. H. Ebendorff-Heidepriem, D. Ehrt, Tb3+ f-d absorption as indicator of the effect of covalency on the Judd-Ofelt Ω2 parameter in glasses. J. Non-Cryst. Solids 248, 247–252 (1999)

    Article  ADS  Google Scholar 

  53. V.K. Rai, S.B. Rai, D.K. Rai, Optical studies of Dy3+ doped tellurite glass: Observation of yellow-green upconversion. Opt. Commun. 257, 112–119 (2006)

    Article  ADS  Google Scholar 

  54. B.C. Jamalaiah, J.S. Kumar, T. Suhasini, K. Jang, H.S. Lee, H. Choi, L. Rama Moorthy, Visible luminescence characteristics of Dy3+-doped LBTAF glasses. J. Alloys Compd. 474, 382–387 (2009)

    Article  Google Scholar 

  55. J. Kaewkhao, N. Wantana, S. Kaewjaeng, S. Kothan, H.J. Kim, Luminescence characteristics of Dy3+ doped Gd2O3-CaO-SiO2-B2O3 scintillating glasses. J. Rare Earths 34, 583–589 (2016)

    Article  Google Scholar 

  56. B. Shanmugavelu, V.V. Ravi Kanth Kumar, Luminescence studies of Dy3+ doped bismuth zinc borate glasses. J. Lumin. 146, 358–363 (2014)

    Article  Google Scholar 

  57. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color. Res. Appl. 17, 142–144 (1992)

    Article  Google Scholar 

  58. O. Ravi, C. Madhukar Reddy, B. Sudhakar Reddy, B. Deva Prasad Raju, Judd – Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses. Opt. Commun. 312, 263–268 (2014)

    Article  ADS  Google Scholar 

  59. R. Vijayakumar, G. Venkataiah, K. Marimuthu, Structural and luminescence studies on Dy3+ doped boro-phosphate glasses for white LED’s and laser applications. J. Alloys Compd. 652, 234–243 (2015)

    Article  Google Scholar 

  60. P. Suthanthirakumar, K. Marimuthu, Investigations on spectroscopic properties of Dy3+ doped zinc telluro-fluoroborate glasses for laser and white LED applications. J. Mol. Struct. 1125, 443–452 (2016)

    Article  ADS  Google Scholar 

  61. G. Lakshminarayana, J. Qiu, Photoluminescence of Pr3+, Sm3+ and Dy3+-doped SiO2-Al2O3-BaF2-GdF3 glasses. J. Alloys Compd. 476, 470–476 (2009)

    Article  Google Scholar 

  62. N. Vijaya, K. Upendra Kumar, C.K. Jayasankar, Spectrochimica acta part a : Molecular and biomolecular spectroscopy Dy3+ −doped zinc fluorophosphate glasses for white luminescence applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 113, 145–153 (2013)

    Article  ADS  Google Scholar 

  63. C. Basavapoornima, C.K. Jayasankar, P.P. Chandrachoodan, Luminescence and laser transition studies of Dy3+:K-Mg-Al fluorophosphate glasses. Phys. B Condens. Matter 404, 235–242 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Syam Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syam Prasad, P., Venkateswara Rao, P. (2018). Structural and Luminescence Properties of Tellurite Glasses for Laser Applications. In: El-Mallawany, R. (eds) Tellurite Glass Smart Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-76568-6_4

Download citation

Publish with us

Policies and ethics