Skip to main content

Finite Element Method for Sensing Applications

  • Chapter
  • First Online:
Book cover Computational Photonic Sensors

Abstract

In this chapter, the fundamentals of the nodal finite element method (FEM) are presented, including the first-order element and second-order element. The nodal FEM is introduced for the scalar concept of the propagation constant of 2D waveguide cross section. Then, it is extended to include the time domain analysis under perfectly matched layer absorbing boundary conditions. A simple sensor based on optical grating is thereafter simulated using the time domain FEM. Also, the full vectorial analysis is discussed through the application of the penalty function method on the nodal FEM and the vector finite element method (VFEM). For the penalty function method, a global weighting factor is used to incorporate the effect of the divergence-free equation. In the VFEM, nodes are used to represent the orthogonal component of the field while the edges are used to represent the tangential component for accurate application of the boundary conditions. Finally, surface plasmon resonance photonic crystal fiber biosensor is introduced as an example of the full vectorial analysis using the VFEM .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK Scientific, 1992)

    Chapter  Google Scholar 

  2. Zienkiewitz, The Finite Element Method (New York, McGraw-Hill, 1973)

    Google Scholar 

  3. M.V.K. Chari, P.P. Silvester, Finite Elements in Electrical and Magnetic Field Problems (Chechester, Wiley, 1980)

    Google Scholar 

  4. E. Yamashita, Analysis Methods for Electromagnetic Wave Problems (Boston, Artech House, 1990)

    Google Scholar 

  5. D.B. Davidson, Computational Electromagnetics for RF and Microwave Applications (Cambridge, Cambridge University Press, 2005)

    Google Scholar 

  6. A. Taflov, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech, 1995)

    Google Scholar 

  7. D. Pinto, S.S.A. Obayya, Improved complex-envelope alternating-direction-implicit finite-difference-time-domain method for photonic-bandgap cavities. J. Lightwave Technol. 25(1), 440–447 (2007)

    Article  Google Scholar 

  8. B. Rahman, J. Davis, Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2(5), 682–688 (1984)

    Article  Google Scholar 

  9. B.M. Azizur Rahman, Finite-element analysis of optical and microwave waveguide problems. IEEE Trans. Microwave Theor. Techniq. 32(1), 20–28 (1984)

    Google Scholar 

  10. K. Kawano, T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrodinger’s Equation (New York, wiley, 2001)

    Google Scholar 

  11. M. Koshiba, H. Saitoh, M. Eguchi, K. Hirayama, Simple scaler finite element approach to optical waveguides. IEE Proc. J. 139, 166–171 (1992)

    Google Scholar 

  12. S.S.A. Obayya, Computational Photonics (Wiley, 2011)

    Google Scholar 

  13. S.S.A. Obayya, Efficient finite-element-based time-domain beam propagation analysis of Optical integrated circuits. IEEE J. Quant. Electron. 40(5), 591–595 (2004)

    Article  Google Scholar 

  14. T. Itoh, R. Mittra, Spectral domain approach for calculation the dispersion characteristics of microstrip lines. IEEE Trans. Microwave Theor. Tech. MTT21 496–499 (1973)

    Google Scholar 

  15. A. Abdrabou, A.M. Heikal, S.S.A. Obayya, Efficient rational Chebyshev pseudo-spectral method with domain decomposition for optical waveguides modal analysis. Opt. Express 24(10), 10495–10511 (2016)

    Article  Google Scholar 

  16. D.M. Pozar, Microwave Engineering (Wiley, Hoboken, NJ, 2012)

    Google Scholar 

  17. J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  18. S.D. Gedney, An anisotropic perfectly matched layer absorbing media for the truncation of FDTD latices. Antennas Prop. IEEE Trans. 44, 1630–1639 (1996)

    Google Scholar 

  19. W.C. Chew, W.H. Weedon, A 3D perfectly matched medium from modifie Maxwell’s equations with stretched coordinates. Microwave Opt. Technol. Lett. 7, 590–604 (1994)

    Article  Google Scholar 

  20. W.C. Chew, J.M. Jin, E. Michielssen, complex coordinate stretching as a generalized absorbing boundary condition. Microwave Opt. Technol. Lett. 15(6), 363–369 (1997)

    Article  Google Scholar 

  21. M. Koshiba, Y. Tsuji, M. Hikari, Time-domain beam propagation method and its application to photonic crystal circuits. J. Lightwave Technol. 18(1), 102–110 (2000)

    Article  Google Scholar 

  22. V.F. Rodríguez-Esquerre, M. Koshiba, Finite element analysis of photonic crystal cavities: time and frequency domain. J. Lightwave Technol. 23(3), 1514–1521 (2005)

    Article  Google Scholar 

  23. T. Fujisawa, M. Koshiba, time-domain beam propagation method for nonlinear optical propagation analysis. J. Lightwave Tech. 22(2), 684–691 (2004)

    Article  Google Scholar 

  24. V.F. Rodríguez-Esquerre, M. Koshiba, E.H.-Figueroa, Frequency-dependent envelope finite element time domain analysis of dispersion materials. Microwave Opt. Tech. Lett. 44(1), 13–16 (2004)

    Article  Google Scholar 

  25. A. Niiyama, M. Koshiba, Y. Tsuji, An efficient scalar finite element formulation for nonlinear optical channel waveguides. J. Lightwave Technol. 13(9), 1919–1925 (1995)

    Article  Google Scholar 

  26. G.R. Liu, A Generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int. J. Comput. Methods (2008)

    Google Scholar 

  27. K.S.R. Atia, S.S.A. Obayya, Novel gradient smoothing method-based time domain beam propagation analysis of optical integrated circuits. Signal Process. Photon. Commun. JM3A–23 (2015)

    Google Scholar 

  28. G.R. Liu, Meshfree Methods: Moving Beyond the Finite Element Method (CRC Press, 2009)

    Google Scholar 

  29. J.R. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge, Cambridge, 2002)

    Google Scholar 

  30. K.S.R. Atia, A.M. Heikal, S.S.A. Obayya, Efficient smoothed finite element time domain beam propagation method for photonic devices. Opt. Exp. 23(17), 22199–22213 (2015)

    Article  Google Scholar 

  31. K.S.R. Atia, A.M. Heikal, S.S.A. Obayya, Time-domain beam propagation method based on gradient smoothing technique for dispersive materials, in Progress in Electromagnetics Research symposium (PIERS) (2015)

    Google Scholar 

  32. P.L. Liu, Q. Zhao, F.S. Choa, Slow-wave finite-difference beam propagation method. IEEE Photon. Technol. Lett. 7(8), 890–892 (1995)

    Article  Google Scholar 

  33. G.H. Jin, J. Harari, J.P. Vilcot, D. Decoster, An improved time domain beam propagation method for integrated optics components. IEEE Photon. Technol. Lett. 9(3), 117–122 (1997)

    Article  Google Scholar 

  34. J. Lee, B. Fornberg, A split step approach for the 3-D Maxwell’s equations. J. Comput. Appl. Math. 158(2), 485–505 (2003)

    Article  MathSciNet  Google Scholar 

  35. M. Movahhedi, A. Abdipour, Alternating direction implicit formulation for the finite element time domain method. IEEE Trans. Microwave Theor. Technol. 55(6), 1322–1331 (2007)

    Article  Google Scholar 

  36. J.F. Lee, WETD-A finite element time-domain approach for solving Maxwell’s equations. IEEE Microwave Guided Wave Lett. 4(1), 11–13 (1994)

    Article  Google Scholar 

  37. V.F. Rodríguez-Esquerre, H.E. Hernández-Figueroa, Novel time-domain step-by-step scheme for integrated optical applications. IEEE Photon. Technol. Lett. 13(4), 311–313 (2001)

    Article  Google Scholar 

  38. H.A. Van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. 13(2), 631–644 (1992)

    Article  MathSciNet  Google Scholar 

  39. A.D. Berk, Variational principles for electromagnetic resonators and waveguides. IRE Trans. Antennas Propagat. 4(2) (1956)

    Article  Google Scholar 

  40. K.T.V. Grattan, B.T. Meggitt, Optical Fiber Sensor Technology: Fundamental (US, Springer, 2000)

    Google Scholar 

  41. T. Dar, J. Homola, B.M.A. Rahman, M. Rajarajan, Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 51(34) (2012)

    Article  Google Scholar 

  42. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets et al., All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics. 3(4) (2009)

    Article  Google Scholar 

  43. Barrios CA, Banuls MJ, Gonzalez-Pedro V, Gylfason KB, Sanchez, Griol A, et al. Label-free optical biosensing with slot-waveguides. Opt. Lett. 33(7) 2008

    Article  Google Scholar 

  44. M. Koshiba, K. Hayata, M. Suzuki, Vectorial finite-element formulation without spurious solutions for dielectric waveguide problems. Electron. Lett. 20, 409–410 (1984)

    Article  Google Scholar 

  45. Sh Birman, M. The, Maxwell operator for a resonator with inward edges. Vestnik Leningradskogo Universiteta. Matematika. 19, 1–8 (1986)

    MATH  Google Scholar 

  46. S.M. Birman, Z.M. Solomyak, Maxwell operator in regions with nonsmooth boundaries. Siberian Malh. J. 28, 12–24 (1987)

    Article  Google Scholar 

  47. F. Kikuchi, Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Compur. Methods Appl. Mech. Eng. 64, 509–521 (1987)

    Article  MathSciNet  Google Scholar 

  48. M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. 8(3) (2016)

    Article  Google Scholar 

  49. M.F.O. Hameed, M. El-Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photon. Technol. Lett. 28(1) (2015)

    Article  Google Scholar 

  50. S.I. Azzam, R.E.A. Shehata, M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surfrace plasmon resonance based sensor. J. Opt. Quant. Electron. 48(142) (2016)

    Google Scholar 

  51. F.F.K. Hussain, A.M. Heikal, M.F.O. Hameed, J. El-Azab, W.S. Abdelaziz, S.S.A. Obayya, Dispersion characteristics of asymmetric channel plasmon polariton waveguide. IEEE J. Quant. Electron. 50(6) (2014)

    Article  Google Scholar 

  52. M.F.O. Hameed, S.S.A. Obayya, H.A. El-Mikati, Passive polarization converters based on photonic crystal fiber with L-shaped core region. IEEE J. Lightwave Technol. 50(6) (2012)

    Google Scholar 

  53. M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Novel passive polarization rotator based on spiral photonic crystal fiber. IEEE Photon. Technol. Lett. 25(16) (2013)

    Article  Google Scholar 

  54. M.F.O. Hameed, S.S.A. Obayya, R.J. Wiltshire, Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3) (2010)

    Article  Google Scholar 

  55. M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Passive polarization converters based on photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3) (2010)

    Google Scholar 

  56. S.I. Azzam, M.F.O. Hameed, N.F.F. Areed, S.S.A. Obayya, H. El-Mikati et al., Proposal of ultracompact CMOS compatible TE-/TM-pass polarizer based on SOI platform. IEEE Photon. Technol. Lett. 33(13) (2015)

    Google Scholar 

  57. A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. IEEE J. Lightwave Technol. 33(13) (2015)

    Article  Google Scholar 

  58. S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Computational Liquid Crystal Photonics: Fundamentals (Wiley, Modelling and Applications, 2016)

    Book  Google Scholar 

  59. M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, A.M. Nasr, M.L. Abo el Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fiber coupler. IET Optoelectron. 3(6) (2009)

    Google Scholar 

  60. M.F.O. Hameed, A.M. Heikal, B.M. Younis, M.M. Abdelrazzak, S.S.A. Obayya, Ultra-high tunable liquid crystal plasmonic photonic crystal fiber polarization filter. Opt. Exp. 23(6), 7007–7020 (2015)

    Article  Google Scholar 

  61. B.M. Younis, A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Enhancement of plasmonic liquid photonic crystal fiber. Plasmonics p. 1–7 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhat O. Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atia, K.S.R., Ghosh, S., Heikal, A.M., Hameed, M.F.O., Rahman, B.M.A., Obayya, S.S.A. (2019). Finite Element Method for Sensing Applications. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics