Skip to main content

Fundamentals of Photonic Crystals

  • Chapter
  • First Online:
Computational Photonic Sensors

Abstract

In this chapter, the basic principles of photonic crystal (PhC) structures and their possible applications are presented. In this context, one-dimensional photonic crystals, Bloch’s theorem including Maxwell’s equations in periodic media, are discussed thoroughly. Additionally, the different types of defects, bandgap size, and the relation between the Brillouin zone and the reciprocal lattice are introduced. Further, the different types of PhCs such as one-dimensional, two-dimensional, and three-dimensional structures are presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995)

    MATH  Google Scholar 

  2. M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, M.I. Abo el Maaty, A.M. Nasr, Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. IEEE J. Lightwave Technol. 27(21), 4754–4762 (2009)

    Article  Google Scholar 

  3. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001)

    Book  Google Scholar 

  4. S.G. Johnson, J.D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer Academic Publishers, Boston, 2002)

    Google Scholar 

  5. E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  6. S. John, Strong localization of photons in certain disordered dielectric super lattices. Phys. Rev. Lett. 58, 2486 (1987)

    Article  Google Scholar 

  7. E. Yablonovitch, T.J. Gmitter, K.M. Leung, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67(17) (1991)

    Article  Google Scholar 

  8. T.F. Krauss, R.M. De La Rue, S. Brand, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383(6602) (1996)

    Article  Google Scholar 

  9. S.G. Johnson, J.D. Joannopoulos, Introduction to Photonic Crystals: Bloch’s Theorem, Band Diagrams, and Gaps (But no Defects), Pamphlet. Feb 2003

    Google Scholar 

  10. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988)

    Google Scholar 

  11. N. Ashcroft, N. Mermin, Solid State Physics (Harcourt College Publishers, 1976)

    Google Scholar 

  12. S. Satpathy, Ze Zhang, M. R, Theory of photonic bands in three—dimensional periodic dielectric structures. Phys. Rev. Lett. 64, 1239–1242 (1990)

    Article  Google Scholar 

  13. K.M.C. Ho, T. Chan, C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990)

    Article  Google Scholar 

  14. C.T. Chan, K.M. Ho, C.M. Soukoulis, Photonic band gaps in experimentally realizable periodic dielectric structures. Europhys. Lett. 16, 563–568

    Article  Google Scholar 

  15. H.S. Sozuer, J.P. Dowling, Photonic band calculations for woodpile structures. J. Mod. Opt. 41(2), 231–239 (1994)

    Article  Google Scholar 

  16. H.S. Sozuer, J.W. Haus, Photonic bands: Simple-cubis lattice. J. Opt. Soc. Am. B 10(2), 296–302 (1993)

    Article  Google Scholar 

  17. S.-Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzychi, S.R. Kurtz, J. Bur, A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251–253 (1998)

    Article  Google Scholar 

  18. S.G. Johnson, J.D. Joannopoulos, Three dimensionally periodic dielectric layered structure with omnidirectional photonic band gap. Appl. Phys. Lett. 77, 3490–3492 (2000)

    Article  Google Scholar 

  19. S.L. McCall, P.M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, Microwave propagation in two dimensional dielectric lattices, Phys. Rev. Lett. 67, 2017–2020 (1991)

    Article  Google Scholar 

  20. R.D. Meade, A.M. Rape, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand, Accurate theoretical analysis of photonic band-gap materials. Phys. Rev. B 48, 8434–8437 (1993)

    Article  Google Scholar 

  21. E. Istrate, E.H. Sargent, Photonic crystal Heterostructures and interfaces. Rev. Mod. Phys. 78, 455–481 (2006)

    Article  Google Scholar 

  22. M.F.O. Hameed, S.S.A. Obayya, H.A. El-Mikati, Highly nonlinear birefringent soft glass photonic crystal fiber with liquid crystal core. IEEE Photonics Technol. Lett. 23(20), 1478–1480 (2011)

    Article  Google Scholar 

  23. M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Novel passive polarization rotator based on spiral photonic crystal fiber. IEEE Photonics Technol. Lett. 25(16), 1578–1581 (2013)

    Article  Google Scholar 

  24. P. Russell, Photonic crystal fibres. Science 299, 358–362 (2003)

    Article  Google Scholar 

  25. A. Mekis, J.C. Chin, I. Kurland, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998)

    Article  Google Scholar 

  26. S.-Y. Lin, E. Chow, V. Hietala, P.R. Villeneuve, J.D. Joannopoulos, High transmission throuth sharp bends in photonic crystal waveguide. Phys. Rev. Lett. 77(81), 3787–3790 (1996)

    Article  Google Scholar 

  27. S. Fan, G. Steven, J.D. Joannopoulos, C. Manolatou, H.A. Haus, Waveguide branches in photonic crystal. J. Opt. Soc. Am. B 18(2), 162–165 (2001)

    Article  Google Scholar 

  28. S. Fan, G. Steven, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Channel drop tunneling throught localized states. Phys. Rev. Lett. 80(5), 960–963 (1998)

    Article  Google Scholar 

  29. C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantun Electron. 35(9), 1322–1331 (1999)

    Article  Google Scholar 

  30. F. Parandin, M.M. Karkhanehchi, Tetrahertz all-optical nor and lgic gates based on 2d photonic crystal. Superlattices Microstruct. 101, 253–260 (2016)

    Article  Google Scholar 

  31. S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications (John, Apr 2016)

    Book  Google Scholar 

  32. A. Salmanpour, S.M. Nejad, A. Bahrami, Photonic crystal logic gates: an overview. Opt. Quantum Electron. 47(7), 2249–2275 (2015)

    Article  Google Scholar 

  33. H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, All optical nor and nand gate based on nonlinear photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 125(19), 5701–5704 (2014)

    Article  Google Scholar 

  34. P. Chanalia, A. Gupta, Realization of high speed all-optical logic gates based on the nonlinear characteristics of a SOA. Indian J. Sci. Technol. 9(36) (2016)

    Google Scholar 

  35. R. Fan, X. Yang, X. Meng, X. Sun, 2d photonic crystal logic gates based on self- collimated effect. J. Phys. D Appl. Phys. 49(32), 325104 (2016)

    Google Scholar 

  36. S.C. Xavier, B.E. Carolin, A.P. Kabilan, W. Johnson, Compact photonic crystal integrated circuit for all- optical logic operations. IET Optoelectron. 10(4), 142–147 (2016)

    Article  Google Scholar 

  37. Z.H. Chen, Q.L. Tan, J. Lao, Y. Liang, X.G. Huang, Reconfigurable and tunable flat graphene photonic crystal circuits. Nanoscale, 7(25), 10912–10917 (2015)

    Article  Google Scholar 

  38. N.F.F. Areed, A. El Fakharany, M.F.O. Hameed, S.S.A. Obayya, Controlled optical photonic crystal AND gate using nematic liquid crystal layers. Opt. Quantum Electron. 49(1), 1–12 (2017)

    Article  Google Scholar 

  39. Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, Design of ultra compact all-optical XOR and AND logic gates with low power consumption. Opt. Commun. 284(14), 3528–3533 (2011)

    Article  Google Scholar 

  40. C. Tang, X. Dou, Y. Lin, B. Wu, Q. Zhao, Design of all-optical logic gates avoiding external shifters in a two-dimensional photonic crystal based on multi-mode interference for bpsk signals. Opt. Commun. 316, 49–55 (2014)

    Article  Google Scholar 

  41. E. hak Shaik, N Rangaswamy, Multi-mode interference- based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34, 140–148 (2017)

    Article  Google Scholar 

  42. N.M. D’souza, V. Mathew, Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)

    Article  Google Scholar 

  43. B.D. Clader, S.M. Hendrickson, Microresonator-based all-optical transistor. J. Opt. Soc. Am. B 30(5), 1329 (2013)

    Article  Google Scholar 

  44. V.G. Arkhipkin, S.A. Myslivets, All-optical transistor using a photonic-crystal cavity with an active Raman gain medium. Phys. Rev. A. 88(3) (2013)

    Google Scholar 

  45. P. Andreakou, S.V. Poltavtsev, J.R. Leonard, E.V. Calman, M. Remeika, Y.Y. Kuznetsova, L.V. Butov, J. Wilkes, M. Hanson, A.C. Gossard, Optically controlled excitonic transistor. Appl. Phys. Lett. 104(9), 091101 (2014)

    Article  Google Scholar 

  46. C.Y. Hu, Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Sci. Rep. 7, Article number: 45582 (2017)

    Article  Google Scholar 

  47. M.F.O. Hameed, S.S.A. Obayya, R.J. Wiltshire, Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3), 188–190 (2010)

    Article  Google Scholar 

  48. M.F.O. Hameed, S.S.A. Obayya, H.A. El-Mikati, Passive polarization converters based on photonic crystal fiber with L-shaped core region. IEEE J. Lightwave Technol. 30(3), 283–289 (2012)

    Article  Google Scholar 

  49. M.F.O. Hameed, S.S.A. Obayya, design consideration of polarization converter based on silica photonic crystal fiber. IEEE J. Quantum Electron. 48(8) (2012)

    Article  Google Scholar 

  50. K. Saitoh, Y. Sato, M. Koshiba, Coupling characteristics of dualcore photonic crystal fiber couplers. Opt. Exp. 11(24), 3188–3195 (2003)

    Article  Google Scholar 

  51. M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, A.M. Nasr, M.I. Abo el Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fibre coupler. IET Optoelectron. 3(6), 264–273 (2009)

    Article  Google Scholar 

  52. N. Florous, K. Saitoh, M. Koshiba, A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Opt. Express 13(19), 7365–7373 (2005)

    Article  Google Scholar 

  53. R.A.H. Ali, M.F.O. Hameed, S.S.A. Obayya, Ultra-compact polarization splitter based on silica photonic liquid crystal fiber. J. Appl. Comput. Electromagnet. Soc. (ACES) 30(6), 599–607 (2015)

    Google Scholar 

  54. M.Y. Chen, J. Zhou, Polarization-independent splitter based on all solid silica-based photonic-crystal fibers. J. Lightw. Technol. 24(12), 5082–5086 (2006)

    Article  Google Scholar 

  55. J. Lægsgaard, O. Bang, A. Bjarklev, Photonic crystal fiber design for broadband directional coupling. Opt. Lett. 29(21), 2473–2475 (2004)

    Article  Google Scholar 

  56. N.J. Florous, K. Saitoh, M. Koshiba, Synthesis of polarizationin dependent splitters based on highly birefringent dual-core photonic crystal fiber platforms. IEEE Photonics Technol. Lett. 18(11), 1231–1233 (2006)

    Article  Google Scholar 

  57. M.F.O. Hameed, S.S.A. Obayya, R.J. Wiltshire, Multiplexer-demultiplexer based on nematic liquid crystal photonic crystal fiber coupler. J. Opt. Quantum Electron. 41(4), 315–326 (2009)

    Article  Google Scholar 

  58. M.F.O. Hameed, R.T. Balat, A.M. Heikal, M.M. Abo-Elkhier, M.I. Abo el Maaty, S.S.A. Obayya, Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer. Photonics J. IEEE 7(5), 1–10 (2015)

    Article  Google Scholar 

  59. K. Saitoh, J.N. Florous, M. Koshiba, M. Skorobogatiy, Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers. Opt. Express 13(25), 10327–10335 (2005)

    Article  Google Scholar 

  60. J.N. Dash, R. Jha, Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014)

    Article  Google Scholar 

  61. M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photonics 8(3), 6802912–6802912 (2016)

    Article  Google Scholar 

  62. M.F.O. Hameed, M. El-Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photonics Technol. Lett. 28(1), 59–62 (2015). http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=68Vol

    Article  Google Scholar 

  63. E.K. Akowuah et al., Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48(11), 1403–1410 (2012)

    Article  Google Scholar 

  64. S.I. Azzam, R.E.A. Shehata, M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. J. Opt. Quantum Electron. 48, 142, (2016 )

    Google Scholar 

  65. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54(1/2), 3–15 (1999)

    Article  Google Scholar 

  66. R. Jha, A.K. Sharma, High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt. Lett. 34(6), 749 (2009)

    Article  Google Scholar 

  67. M.S. Mohamed, M.F.O. Hameed, N.F.F. Areed, M.M. El-Okr, S.S.A. Obayya, Analysis of highly sensitive photonic crystal biosensor for glucose monitoring. J. Appl. Comput. Electromagnet. Soc. (ACES) 31(7), 836–842 (2016)

    Google Scholar 

  68. N.F.F. Areed, M.F.O. Hameed, S.S.A. Obayya, Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. J. Opt. Quantum Electron. 49(5), 1–12 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhat O. Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elkaramany, E.M.A., Hameed, M.F.O., Obayya, S.S.A. (2019). Fundamentals of Photonic Crystals. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics