Skip to main content

SOI Waveguide-Based Biochemical Sensors

  • Chapter
  • First Online:
Book cover Computational Photonic Sensors

Abstract

Silicon-on-insulator (SOI)-based nanophotonic is a well-matured technology which enables to fabricate a myriad of optical devices such as sensors, light-emitting diode (LED), organic-LED, photodetectors. The SOI-based biochemicals sensing overcomes the limitations of previous electrical and fiber-based sensing technologies. Here, theoretical framework, performance criteria, and recent progress on SOI-based waveguide and micro-ring resonator sensors are discussed. Finally, this chapter summarizes the SOI-based sensors design and optimizes the configurations for high-sensing performance. Furthermore, the main challenges in SOI-based sensors and possible solutions to these challenges are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.S. Yin, P. Ruffin, Fiber Optic Sensors (Wiley Online Library, 2002)

    Google Scholar 

  2. E. Udd, W.B. Spillman Jr, Fiber Optic Sensors: an Introduction for Engineers and Scientists (Wiley, 2011)

    Google Scholar 

  3. W. Chen, Ş.K. Özdemir, G. Zhao, J. Wiersig, L. Yang, Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017)

    Article  Google Scholar 

  4. Y. Sun, X. Fan, Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399, 205–211 (2011)

    Article  Google Scholar 

  5. C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, M. Armenise, High performance SOI microring resonator for biochemical sensing. Opt. Laser Technol. 59, 60–67 (2014)

    Article  Google Scholar 

  6. M.S. Luchansky, R.C. Bailey, High-Q optical sensors for chemical and biological analysis. Anal. Chem. 84, 793–821 (2011)

    Article  Google Scholar 

  7. R. Ahmed, Literature Review on Ring Resonator Based on Multi-mode Integrated Waveguide for Sensing Application (Aston University, 2014)

    Google Scholar 

  8. Y. Rao, T. Zhu, A highly sensitive fiber-optic refractive index sensor based on an edge-written long-period fiber grating, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (2007), p. JWA53

    Google Scholar 

  9. K.E. Chong, H.W. Orton, I. Staude, M. Decker, A.E. Miroshnichenko, I. Brener et al., Refractive index sensing with Fano resonances in silicon oligomers. Philos. Trans. R. Soc. A 375, 20160070 (2017)

    Article  Google Scholar 

  10. Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao et al., High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer. Sens. Actuators B Chem. 225, 213–220 (2016)

    Article  Google Scholar 

  11. L. Oliveira, C. Moreira, A. Lima, H. Neff, A prism-based polymeric surface plasmon resonance biochip for angular and spectral modes. Proced. Eng. 168, 1350–1353 (2016)

    Article  Google Scholar 

  12. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photonics Technol. Lett. 16, 1149–1151 (2004)

    Article  Google Scholar 

  13. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes et al., Silicon microring resonators. Laser Photonics Rev. 6, 47–73 (2012)

    Article  Google Scholar 

  14. A.L. Washburn, M.S. Luchansky, A.L. Bowman, R.C. Bailey, Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators. Anal. Chem. 82, 69–72 (2009)

    Article  Google Scholar 

  15. C.-Y. Chao, W. Fung, L.J. Guo, Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006)

    Article  Google Scholar 

  16. H. Zhu, I.M. White, J.D. Suter, M. Zourob, X. Fan, Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal. Chem. 79, 930–937 (2007)

    Article  Google Scholar 

  17. J.D. Suter, D.J. Howard, H. Shi, C.W. Caldwell, X. Fan, Label-free DNA methylation analysis using opto-fluidic ring resonators. Biosens. Bioelectron. 26, 1016–1020 (2010)

    Article  Google Scholar 

  18. J.D. Suter, I.M. White, H. Zhu, H. Shi, C.W. Caldwell, X. Fan, Label-free quantitative DNA detection using the liquid core optical ring resonator. Biosens. Bioelectron. 23, 1003–1009 (2008)

    Article  Google Scholar 

  19. A. Fernández Gavela, D. Grajales García, J.C. Ramirez, L.M. Lechuga, Last advances in silicon-based optical biosensors. Sensors 16, 285 (2016)

    Article  Google Scholar 

  20. C. Susskind, Observations of electromagnetic-wave radiation before Hertz. Isis 55, 32–42 (1964)

    Article  Google Scholar 

  21. L. Rayleigh, V. On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture in a conducting screen. Lon. Edinb. Dublin Philos. Mag. J. Sci. 44, 28–52 (1897)

    Article  Google Scholar 

  22. L. Rayleigh, CXII. The problem of the whispering gallery. Lon. Edinb. Dublin Philos. Mag. J. Sci. 20, 1001–1004 (1910)

    Article  Google Scholar 

  23. R. Grover, Indium phosphide based optical micro-ring resonators (2003)

    Google Scholar 

  24. A. Serpengüzel, G. Griffel, S. Arnold, Excitation of resonances of microspheres on an optical fiber. Opt. Lett. 20, 654–656 (1995)

    Article  Google Scholar 

  25. Z. Guo, H. Quan, Energy transfer to optical microcavities with waveguides. J. Heat Transfer 129, 44–52 (2007)

    Article  Google Scholar 

  26. Y. Sun, X. Fan, Analysis of ring resonators for chemical vapor sensor development. Opt. Express 16, 10254–10268 (2008)

    Article  Google Scholar 

  27. W.-Y. Chen, Benzocyclobutene microring resonators. University of Maryland, College Park (2007)

    Google Scholar 

  28. J. Leuthold, C. Koos, W. Freude, Nonlinear silicon photonics. Nat. Photonics 4, 535–544 (2010)

    Article  Google Scholar 

  29. W.R. Wong, O. Krupin, S.D. Sekaran, F.R. Mahamd Adikan, P. Berini, Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides. Anal. Chem. 86, 1735–1743 (2014)

    Article  Google Scholar 

  30. A.A. Rifat, M.R. Hasan, R. Ahmed, H. Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophotonics 12, 012503 (2017)

    Article  Google Scholar 

  31. W.L. Ng, A.A. Rifat, W.R. Wong, G. Mahdiraji, F.M. Adikan, A novel diamond ring fiber-based surface plasmon resonance sensor. Plasmonics, 1–6 (2017)

    Google Scholar 

  32. F. Wan, G. Qian, R. Li, J. Tang, T. Zhang, High sensitivity optical waveguide accelerometer based on Fano resonance. Appl. Opt. 55, 6644–6648 (2016)

    Article  Google Scholar 

  33. R. Ahmed, A.A. Rifat, A.K. Yetisen, S.H. Yun, S. Khan, H. Butt, Mode-multiplexed waveguide sensor. J. ElEctromagn. Waves Appl. 30, 444–455 (2016)

    Article  Google Scholar 

  34. F. Vollmer, L. Yang, Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1, 267–291 (2012)

    Article  Google Scholar 

  35. A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji, et al., Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. (2016)

    Google Scholar 

  36. K. De Vos, Label-Free Silicon Photonics Biosensor Platform with Microring Resonators (Ghent University, 2010)

    Google Scholar 

  37. E. Marcatili, Bends in optical dielectric guides. Bell Labs Tech. J. 48, 2103–2132 (1969)

    Article  Google Scholar 

  38. S. Lin, E. Schonbrun, K. Crozier, Optical manipulation with planar silicon microring resonators. Nano Lett. 10, 2408–2411 (2010)

    Article  Google Scholar 

  39. R. Ahmed, A.A. Rifat, A. Sabouri, B. Al-Qattan, K. Essa, H. Butt, Multimode waveguide based directional coupler. Opt. Commun. 370, 183–191 (2016)

    Article  Google Scholar 

  40. R. Ahmed, A.A. Rifat, A.K. Yetisen, M.S. Salem, S.-H. Yun, H. Butt, Optical microring resonator based corrosion sensing. Rsc Adv. 6, 56127–56133 (2016)

    Article  Google Scholar 

  41. Z. Qiang, W. Zhou, R.A. Soref, Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)

    Article  Google Scholar 

  42. F.-L. Hsiao, C. Lee, Computational study of photonic crystals nano-ring resonator for biochemical sensing. IEEE Sens. J. 10, 1185–1191 (2010)

    Article  Google Scholar 

  43. N.M. Hanumegowda, I.M. White, H. Oveys, X. Fan, Label-free protease sensors based on optical microsphere resonators. Sens. Lett. 3, 315–319 (2005)

    Article  Google Scholar 

  44. M. Charlebois, A. Paquet, L. Verret, K. Boissinot, M. Boissinot, M. Bergeron et al., Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population. Nanoscale Res. Lett. 5, 524 (2010)

    Article  Google Scholar 

  45. I.M. White, H. Zhu, J.D. Suter, N.M. Hanumegowda, H. Oveys, M. Zourob et al., Refractometric sensors for lab-on-a-chip based on optical ring resonators. IEEE Sens. J. 7, 28–35 (2007)

    Article  Google Scholar 

  46. D. Armani, T. Kippenberg, S. Spillane, K. Vahala, Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)

    Article  Google Scholar 

  47. C. Ciminelli, C. Campanella, M. Armenise, Hybrid optical resonator for nanostructured virus detection and sizing, in 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA) (2011), pp. 555–558.

    Google Scholar 

  48. R. Ahmed, S.M. Ullah, Design & analysis on silicon based optical micro-ring resonator sensor device for biomedical applications at μm wavelength, in CIOMP-OSA Summer Session: Lasers and their Applications (2011), p. Tu3

    Google Scholar 

  49. C.F. Carlborg, K.B. Gylfason, A. Kaźmierczak, F. Dortu, M.B. Polo, A.M. Catala et al., A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab Chip 10, 281–290 (2010)

    Article  Google Scholar 

  50. V. Roman, J. Popp, M. Fields, W. Kiefer, Species identification of multicomponent microdroplets by seeding stimulated Raman scattering. JOSA B 16, 370–375 (1999)

    Article  Google Scholar 

  51. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002)

    Article  Google Scholar 

  52. N.A. Yebo, P. Lommens, Z. Hens, R. Baets, An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film. Opt. Express 18, 11859–11866 (2010)

    Article  Google Scholar 

  53. Q. Xu, V.R. Almeida, R.R. Panepucci, M. Lipson, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29, 1626–1628 (2004)

    Article  Google Scholar 

  54. A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald et al., A universal biosensing platform based on optical micro-ring resonators. Biosens. Bioelectron. 23, 939–944 (2008)

    Article  Google Scholar 

  55. A.M. Armani, K.J. Vahala, Heavy water detection using ultra-high-Q microcavities. Opt. Lett. 31, 1896–1898 (2006)

    Article  Google Scholar 

  56. A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. Thurmer, M. Benyoucef et al., On-chip Si/SiO x microtube refractometer. Appl. Phys. Lett. 93, 094106 (2008)

    Article  Google Scholar 

  57. F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, An embedded optical nanowire loop resonator refractometric sensor. Opt. Express 16, 1062–1067 (2008)

    Article  Google Scholar 

  58. C.-Y. Chao, L.J. Guo, Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003)

    Article  Google Scholar 

  59. C. Monat, P. Domachuk, B. Eggleton, Integrated optofluidics: a new river of light. Nat. Photonics 1, 106–114 (2007)

    Article  Google Scholar 

  60. T. Kippenberg, S. Spillane, D. Armani, K. Vahala, Fabrication and coupling to planar high-Q silica disk microcavities. Appl. Phys. Lett. 83, 797–799 (2003)

    Article  Google Scholar 

  61. J. Niehusmann, A. Vörckel, P.H. Bolivar, T. Wahlbrink, W. Henschel, H. Kurz, Ultrahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 29, 2861–2863 (2004)

    Article  Google Scholar 

  62. M. Lončar, A. Scherer, Y. Qiu, Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648–4650 (2003)

    Article  Google Scholar 

  63. T. Ling, S.-L. Chen, L.J. Guo, Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector. Opt. Express 19, 861–869 (2011)

    Article  Google Scholar 

  64. B. Diem, P. Rey, S. Renard, S.V. Bosson, H. Bono, F. Michel et al., SOI’SIMOX’; from bulk to surface micromachining, a new age for silicon sensors and actuators. Sens. Actuators, A 46, 8–16 (1995)

    Article  Google Scholar 

  65. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz et al., Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding. Opt. Express 16, 15137–15148 (2008)

    Article  Google Scholar 

  66. S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, A.W. Poon, Silicon photonics: from a microresonator perspective. Laser Photonics Rev. 6, 145–177 (2012)

    Article  Google Scholar 

Download references

Contributions

Ahmmed A. Rifat and Rajib Ahmed contribute to this chapter equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmmed A. Rifat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rifat, A.A., Ahmed, R., Bhowmik, B.B. (2019). SOI Waveguide-Based Biochemical Sensors. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics