Advertisement

Complex Numbers

  • Jean-Michel Muller
  • Nicolas Brunie
  • Florent de Dinechin
  • Claude-Pierre Jeannerod
  • Mioara Joldes
  • Vincent Lefèvre
  • Guillaume Melquiond
  • Nathalie Revol
  • Serge Torres
Chapter

Abstract

Complex numbers naturally appear in many domains (such as electromagnetism, quantum mechanics, and relativity). It is of course always possible to express the various calculations that use complex numbers in terms of real numbers only. However, this will frequently result in programs that are larger and less clear. A good complex arithmetic would make numerical programs devoted to these problems easier to design, understand, and debug.

References

  1. [32]
    M. Baudin. Error bounds of complex arithmetic. Technical report, 2011. Available at http://forge.scilab.org/upload/compdiv/files/complexerrorbounds_v0.2.pdf.
  2. [65]
    R. P. Brent, C. Percival, and P. Zimmermann. Error bounds on complex floating-point multiplication. Mathematics of Computation, 76:1469–1481, 2007.MathSciNetCrossRefGoogle Scholar
  3. [118]
    M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing on Itanium ®; -based Systems. Intel Press, Hillsboro, OR, 2002.Google Scholar
  4. [163]
    J. W. Demmel and X. Li. Faster numerical algorithms via exception handling. In 11th IEEE Symposium on Computer Arithmetic, pages 234–241, June 1993.Google Scholar
  5. [164]
    J. W. Demmel and X. Li. Faster numerical algorithms via exception handling. IEEE Transactions on Computers, 43(8):983–992, 1994.CrossRefGoogle Scholar
  6. [201]
    B. P. Flannery, W. H. Press, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C, 2nd edition. Cambridge University Press, New York, NY, 1992.zbMATHGoogle Scholar
  7. [207]
    P. Friedland. Algorithm 312: Absolute value and square root of a complex number. Communications of the ACM, 10(10):665, 1967.CrossRefGoogle Scholar
  8. [258]
    N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, 2nd edition, 2002.CrossRefGoogle Scholar
  9. [264]
    T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. Implementing complex elementary functions using exception handling. ACM Transactions on Mathematical Software, 20(2):215–244, 1994.CrossRefGoogle Scholar
  10. [265]
    T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. Implementing the complex arcsine and arccosine functions using exception handling. ACM Transactions on Mathematical Software, 23(3):299–335, 1997.CrossRefGoogle Scholar
  11. [287]
    C.-P. Jeannerod. A radix-independent error analysis of the Cornea-Harrison-Tang method. ACM Transactions on Mathematical Software, 42(3):19:1–19:20, 2016.Google Scholar
  12. [294]
    C.-P. Jeannerod, P. Kornerup, N. Louvet, and J.-M. Muller. Error bounds on complex floating-point multiplication with an FMA. Mathematics of Computation, 86(304):881–898, 2017.MathSciNetCrossRefGoogle Scholar
  13. [295]
    C.-P. Jeannerod, N. Louvet, and J.-M. Muller. Further analysis of Kahan’s algorithm for the accurate computation of 2 × 2 determinants. Mathematics of Computation, 82(284):2245–2264, 2013.MathSciNetCrossRefGoogle Scholar
  14. [296]
    C.-P. Jeannerod, N. Louvet, and J.-M. Muller. On the componentwise accuracy of complex floating-point division with an FMA. In 21st IEEE Symposium on Computer Arithmetic (ARITH-21), pages 83–90, April 2013.Google Scholar
  15. [298]
    C.-P. Jeannerod, N. Louvet, J.-M. Muller, and A. Plet. Sharp error bounds for complex floating-point inversion. Numerical Algorithms, 73(3):735–760, 2016.MathSciNetCrossRefGoogle Scholar
  16. [299]
    C.-P. Jeannerod, J.-M. Muller, and A. Plet. The classical relative error bounds for computing \(\sqrt{a^{2 } + b^{2}}\) and \(c/\sqrt{a^{2 } + b^{2}}\) in binary floating-point arithmetic are asymptotically optimal. In 24th IEEE Symposium on Computer Arithmetic (ARITH-24), July 2017.Google Scholar
  17. [303]
    C.-P. Jeannerod and S. M. Rump. On relative errors of floating-point operations: optimal bounds and applications. Mathematics of Computation, 2016. To appear.Google Scholar
  18. [317]
    W. Kahan. Branch cuts for complex elementary functions. In The State of the Art in Numerical Analysis, pages 165–211, 1987.Google Scholar
  19. [319]
    W. Kahan. Matlab’s loss is nobody’s gain. Technical report, Computer Science, UC Berkeley, 1998. Available at https://people.eecs.berkeley.edu/~wkahan/MxMulEps.pdf.
  20. [384]
    X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A. Kapur, M. Martin, T. Tung, and D. J. Yoo. Design, implementation and testing of extended and mixed precision BLAS. Technical Report 45991, Lawrence Berkeley National Laboratory, 2000. https://publications.lbl.gov/islandora/object/ir%3A115848.
  21. [441]
    J.-M. Muller. On the error of computing ab + cd using Cornea, Harrison and Tang’s method. ACM Transactions on Mathematical Software, 41(2):7:1–7:8, 2015.MathSciNetCrossRefGoogle Scholar
  22. [497]
    D. M. Priest. Efficient scaling for complex division. ACM Transactions on Mathematical Software, 30(4), 2004.Google Scholar
  23. [521]
    S. M. Rump. Ultimately fast accurate summation. SIAM Journal on Scientific Computing, 31(5):3466–3502, 2009.MathSciNetCrossRefGoogle Scholar
  24. [522]
    S. M. Rump. Error estimation of floating-point summation and dot product. BIT Numerical Mathematics, 52(1):201–220, 2012.MathSciNetCrossRefGoogle Scholar
  25. [531]
    S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful rounding. SIAM Journal on Scientific Computing, 31(1):189–224, 2008.MathSciNetCrossRefGoogle Scholar
  26. [561]
    R. L. Smith. Algorithm 116: Complex division. Communications of the ACM, 5(8):435, 1962.Google Scholar
  27. [573]
    G. W. Stewart. A note on complex division. ACM Transactions on Mathematical Software, 11(3):238–241, 1985.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jean-Michel Muller
    • 1
  • Nicolas Brunie
    • 2
  • Florent de Dinechin
    • 3
  • Claude-Pierre Jeannerod
    • 4
  • Mioara Joldes
    • 5
  • Vincent Lefèvre
    • 4
  • Guillaume Melquiond
    • 6
  • Nathalie Revol
    • 4
  • Serge Torres
    • 7
  1. 1.CNRS - LIPLyonFrance
  2. 2.KalrayGrenobleFrance
  3. 3.INSA-Lyon - CITIVilleurbanneFrance
  4. 4.Inria - LIPLyonFrance
  5. 5.CNRS - LAASToulouseFrance
  6. 6.Inria - LRIOrsayFrance
  7. 7.ENS-Lyon - LIPLyonFrance

Personalised recommendations