Skip to main content

Abstract

Extensive studies revealed more than 70 strong candidate regions for susceptibility genes to systemic lupus erythematosus (SLE), and efforts to identify the causative variants in each candidate region are under way. The list of candidate genes points to the crucial pathways that play a role in the development of SLE, such as HLA and immune system signaling, upregulated type I interferon and nucleic acids response, and defective clearance of dying cells. Among these pathways, type I interferon pathway may be particularly relevant to neuropsychiatric SLE (NPSLE), because Aicardi-Goutières syndrome (AGS), a group of single gene diseases with enhanced type I IFN response and exhibits severe central nervous system symptoms, has some similarities with SLE. In fact, variants in some of the genes responsible for AGS are also reported in familial and sporadic patients with SLE. On the other hand, the efforts to identify NPSLE associated genes using case-case association analysis have not been very successful thus far. In the future, large-scale case-case association analysis, not limited to the genes associated with overall SLE, may be necessary in order to identify variants associated with clinical subphenotypes including neuropsychiatric manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alarcon-Segovia D, et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 2005;52:1138–47.

    Article  PubMed  Google Scholar 

  2. Deapen D, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum. 1992;35:311–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rees F, et al. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology. 2017;56:1945–61.

    Article  PubMed  Google Scholar 

  4. Langefeld CD, et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun. 2017;8:16021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun C, et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet. 2016;48:323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris DL, et al. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet. 2016;48:940–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng Y, Updates in Lupus Genetics TBP. Curr Rheumatol Rep. 2017;19:68.

    Article  PubMed  Google Scholar 

  8. Raj P, et al. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. Elife. 2016; 5. pii: e12089.

    Google Scholar 

  9. Taylor KE, et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet. 2011;7:e1001311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Graham RR, et al. Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am J Hum Genet. 2002;71:543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Furukawa H, et al. Human leukocyte antigens and systemic lupus erythematosus: a protective role for the HLA-DR6 alleles DRB1*13:02 and *14:03. PLoS One. 2014;9:e87792.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sirikong M, et al. Association of HLA-DRB1*1502-DQB1*0501 haplotype with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens. 2002;59:113–7.

    Article  CAS  PubMed  Google Scholar 

  13. Lu LY, et al. Molecular analysis of major histocompatibility complex allelic associations with systemic lupus erythematosus in Taiwan. Arthritis Rheum. 1997;40:1138–45.

    Article  CAS  PubMed  Google Scholar 

  14. Oka S, et al. Protective effect of the HLA-DRB1*13:02 allele in Japanese rheumatoid arthritis patients. PLoS One. 2014;9:e99453.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kawasaki A, et al. Protective role of HLA-DRB1*13:02 against microscopic Polyangiitis and MPO-ANCA-positive Vasculitides in a Japanese population: a case-control study. PLoS One. 2016;11:e0154393.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Furukawa H, et al. Human leukocyte antigen and systemic sclerosis in Japanese: the sign of the four independent protective alleles, DRB1*13:02, DRB1*14:06, DQB1*03:01, and DPB1*02:01. PLoS One. 2016;11:e0154255.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Furuya T, et al. Immunogenetic features in 120 Japanese patients with idiopathic inflammatory myopathy. J Rheumatol. 2004;31:1768–74.

    CAS  PubMed  Google Scholar 

  18. Furukawa H, et al. The role of common protective alleles HLA-DRB1*13 among systemic autoimmune diseases. Genes Immun. 2017;18:1–7.

    Article  CAS  PubMed  Google Scholar 

  19. Hachiya Y, et al. Association of HLA-G 3' untranslated region polymorphisms with systemic lupus erythematosus in a Japanese population: a case-control association study. PLoS One. 2016;11:e0158065.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fernando MM, et al. Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G. Ann Rheum Dis. 2012;71:777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lintner KE, et al. Early components of the complement classical activation pathway in human systemic autoimmune diseases. Front Immunol. 2016;7:36.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim K, et al. The HLA-DRbeta1 amino acid positions 11-13-26 explain the majority of SLE-MHC associations. Nat Commun. 2014;5:5902.

    Article  CAS  PubMed  Google Scholar 

  23. Bennett L, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baechler EC, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100:2610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawasaki A, et al. Association of IRF5 polymorphisms with systemic lupus erythematosus in a Japanese population: support for a crucial role of intron 1 polymorphisms. Arthritis Rheum. 2008;58:826–34.

    Article  CAS  PubMed  Google Scholar 

  26. Graham RR, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A. 2007;104:6758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawasaki A, et al. TLR7 single-nucleotide polymorphisms in the 3′ untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study. Arthritis Res Ther. 2011;13:R41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen N, et al. Sex-specific association of X-linked toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2010;107:15838–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cunninghame Graham DS, et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 2011;7:e1002341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bronson PG, et al. The genetics of type I interferon in systemic lupus erythematosus. Curr Opin Immunol. 2012;24:530–7.

    Article  CAS  PubMed  Google Scholar 

  31. Crow YJ, Manel N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol. 2015;15:429–40.

    Article  CAS  PubMed  Google Scholar 

  32. Cuadrado E, et al. Aicardi–Goutières syndrome harbours abundant systemic and brain-reactive autoantibodies. Ann Rheum Dis. 2015;74:1931–9.

    Article  CAS  PubMed  Google Scholar 

  33. Abe J, et al. A nationwide survey of Aicardi-Goutieres syndrome patients identifies a strong association between dominant TREX1 mutations and chilblain lesions: Japanese cohort study. Rheumatology. 2014;53:448–58.

    Article  CAS  PubMed  Google Scholar 

  34. Shiozawa S, et al. Interferon-alpha in lupus psychosis. Arthritis Rheum. 1992;35:417–22.

    Article  CAS  PubMed  Google Scholar 

  35. Oda H, et al. Aicardi-Goutieres syndrome is caused by IFIH1 mutations. Am J Hum Genet. 2014;95:121–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Costa-Reis P, Sullivan KE. Monogenic lupus: it's all new. Curr Opin Immunol. 2017;49:87–95.

    Article  CAS  PubMed  Google Scholar 

  37. Ellyard JI, et al. Identification of a pathogenic variant in TREX1 in early-onset cerebral systemic lupus erythematosus by whole-exome sequencing. Arthritis Rheumatol. 2014;66:3382–6.

    Article  CAS  PubMed  Google Scholar 

  38. de Vries B, et al. TREX1 gene variant in neuropsychiatric systemic lupus erythematosus. Ann Rheum Dis. 2010;69:1886–7.

    Article  PubMed  Google Scholar 

  39. Lee-Kirsch MA, et al. Mutations in the gene encoding the 3′-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39:1065–7.

    Article  CAS  PubMed  Google Scholar 

  40. Mistry P, Kaplan MJ. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin Immunol. 2017;185:59–73.

    Article  CAS  PubMed  Google Scholar 

  41. Macedo AC, Isaac L. Systemic lupus erythematosus and deficiencies of early components of the complement classical pathway. Front Immunol. 2016;7:55.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sisirak V, et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell. 2016;166:88–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yasutomo K, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001;28:313–4.

    Article  CAS  PubMed  Google Scholar 

  44. Graham RR, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet. 2008;40:1059–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kawasaki A, et al. Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study. Arthritis Res Ther. 2010;12:R174.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sandling JK, Garnier S, Sigurdsson S, Wang C, Nordmark G, Gunnarsson I, et al. A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE. Eur J Hum Genet. 2011;1(9):479–84.

    Article  Google Scholar 

  47. Lewis MJ, et al. UBE2L3 polymorphism amplifies NF-kappaB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet. 2015;96:221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu YY, et al. Concordance of increased B1 cell subset and lupus phenotypes in mice and humans is dependent on BLK expression levels. J Immunol. 2015;194:5692–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Samuelson EM, et al. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS One. 2014;9:e92054.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ito I, et al. Replication of the association between the C8orf13-BLK region and systemic lupus erythematosus in a Japanese population. Arthritis Rheum. 2009;60:553–8.

    Article  CAS  PubMed  Google Scholar 

  51. Hom G, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358:900–9.

    Article  CAS  PubMed  Google Scholar 

  52. Kawasaki A, et al. Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region. Arthritis Res Ther. 2008;10:R113.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhao J, et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet. 2017;49:433–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fredi M, et al. Typing TREX1 gene in patients with systemic lupus erythematosus. Reumatismo. 2015;67:1–7.

    Article  CAS  PubMed  Google Scholar 

  55. Ho RC, et al. Genetic variants that are associated with neuropsychiatric systemic lupus erythematosus. J Rheumatol. 2016;43:541–51.

    Article  PubMed  Google Scholar 

  56. Ota Y, et al. Single nucleotide polymorphisms of CD244 gene predispose to renal and neuropsychiatric manifestations with systemic lupus erythematosus. Mod Rheumatol. 2010;20:427–31.

    Article  CAS  PubMed  Google Scholar 

  57. Pullmann R Jr, et al. Apolipoprotein E polymorphism in patients with neuropsychiatric SLE. Clin Rheumatol. 2004;23:97–101.

    Article  PubMed  Google Scholar 

  58. Ruiz-Larranaga O, et al. Genetic association study of systemic lupus erythematosus and disease subphenotypes in European populations. Clin Rheumatol. 2016;35:1161–8.

    Article  PubMed  Google Scholar 

  59. Taha S, et al. Vascular endothelial growth factor G1612A (rs10434) gene polymorphism and neuropsychiatric manifestations in systemic lupus erythematosus patients. Rev Bras Reumatol Engl Ed. 2017;57:149–53.

    Article  PubMed  Google Scholar 

  60. Ramirez GA, et al. TRPC6 gene variants and neuropsychiatric lupus. J Neuroimmunol. 2015;288:21–4.

    Article  CAS  PubMed  Google Scholar 

  61. Sandrin-Garcia P, et al. Functional single-nucleotide polymorphisms in the DEFB1 gene are associated with systemic lupus erythematosus in southern Brazilians. Lupus. 2012;21:625–31.

    Article  CAS  PubMed  Google Scholar 

  62. Kisiel BM, et al. Differential association of juvenile and adult systemic lupus erythematosus with genetic variants of oestrogen receptors alpha and beta. Lupus. 2011;20:85–9.

    Article  CAS  PubMed  Google Scholar 

  63. Yang W, et al. ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum Mol Genet. 2009;18:2063–70.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bassi C, et al. Efficiency of the DNA repair and polymorphisms of the XRCC1, XRCC3 and XRCC4 DNA repair genes in systemic lupus erythematosus. Lupus. 2008;17:988–95.

    Article  CAS  PubMed  Google Scholar 

  65. Oroszi G, et al. The Met66 allele of the functional Val66Met polymorphism in the brain-derived neurotrophic factor gene confers protection against neurocognitive dysfunction in systemic lupus erythematosus. Ann Rheum Dis. 2006;65:1330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liao CH, et al. Polymorphisms in the promoter region of RANTES and the regulatory region of monocyte chemoattractant protein-1 among Chinese children with systemic lupus erythematosus. J Rheumatol. 2004;31:2062–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Tsuchiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuchiya, N. (2018). Genetics. In: Hirohata, S. (eds) Neuropsychiatric Systemic Lupus Erythematosus. Springer, Cham. https://doi.org/10.1007/978-3-319-76496-2_2

Download citation

Publish with us

Policies and ethics