Skip to main content

Breast Cancer

  • Chapter
  • First Online:
Serous Effusions

Abstract

Breast carcinoma can metastasize to the serosal cavities at any point of time in the course of the disease, in some cases 20 or 30 years after diagnosis of the primary tumor. Irrespective of the time point, metastasis to this anatomic site is in the majority of cases rapidly fatal. Breast carcinoma most frequently involves the pleural cavity, but dissemination to the pericardial and peritoneal cavities may occur, the latter site particularly favored by lobular carcinoma. Studies analyzing the molecular features of breast carcinoma cells in effusions and their clinical and therapeutic relevance are considerably fewer than those of other carcinomas affecting the serosal cavities, such as ovarian and lung primaries. Some knowledge has nevertheless been gained regarding this disease in recent years. This chapter discusses our current understanding of the biological characteristics of breast carcinoma cells in serous effusions and their potential clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal A. International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol Biomarkers Prev. 2015;24:1495–506.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  3. Fentiman IS, Millis R, Sexton S, Hayward JL. Pleural effusion in breast cancer: a review of 105 cases. Cancer. 1981;47:2087–92.

    Article  PubMed  CAS  Google Scholar 

  4. Raju RN, Kardinal CG. Pleural effusion in breast carcinoma: analysis of 122 cases. Cancer. 1981;48:2524–7.

    Article  PubMed  CAS  Google Scholar 

  5. Wilkes JD, Fidias P, Vaickus L, Perez RP. Malignancy-related pericardial effusion. 127 cases from the Roswell Park Center Institute. Cancer. 1995;76:1377–87.

    Article  PubMed  CAS  Google Scholar 

  6. Buck M, Ingle JN, Giuliani ER, Gordon JR, Therneau TM. Pericardial effusion in women with breast cancer. Cancer. 1987;60:263–9.

    Article  PubMed  CAS  Google Scholar 

  7. DiBonito L, Falconieri G, Colautti I, Bonifacio D, Dudine S. The positive peritoneal effusion. A retrospective study of cytopathologic diagnoses with autopsy confirmation. Acta Cytol. 1993;37:483–8.

    PubMed  CAS  Google Scholar 

  8. Johnston WW. The malignant pleural effusion. A review of cytopathologic diagnoses of 584 specimens from 472 consecutive patients. Cancer. 1985;56:905–9.

    Article  PubMed  CAS  Google Scholar 

  9. Pokieser W, Cassik P, Fischer G, Vesely M, Ulrich W, Peters-Engl C. Malignant pleural and pericardial effusion in invasive breast cancer: impact of the site of the primary tumor. Breast Cancer Res Treat. 2004;83:139–42.

    Article  PubMed  CAS  Google Scholar 

  10. Kamby C, Vejborg I, Kristensen B, Olsen LO, Mouridsen HT. Metastatic pattern in recurrent breast cancer. Special reference to intrathoracic recurrences. Cancer. 1988;62:2226–33.

    Article  PubMed  CAS  Google Scholar 

  11. DeCamp MM Jr, Mentzer SJ, Swanson SJ, Sugarbaker DJ. Malignant effusive disease of the pleura and pericardium. Chest. 1997;112(4 Suppl):291S–5S.

    Article  PubMed  Google Scholar 

  12. van de Molengraft FJ, Vooijs GP. The interval between the diagnosis of malignancy and the development of effusions, with reference to the role of cytologic diagnosis. Acta Cytol. 1988;32:183–7.

    PubMed  Google Scholar 

  13. Dieterich M, Goodman SN, Rojas-Corona RR, Emralino AB, Jimenez-Joseph D, Sherman ME. Multivariate analysis of prognostic features in malignant pleural effusions from breast cancer patients. Acta Cytol. 1994;38:945–52.

    PubMed  CAS  Google Scholar 

  14. Sanchez-Armengol A, Rodriguez-Panadero F. Survival and talc pleurodesis in metastatic pleural carcinoma, revisited. Report of 125 cases. Chest. 1993;104:1482–5.

    Article  PubMed  CAS  Google Scholar 

  15. Inoue K, Ogawa M, Horikoshi N, Aiba K, Mukaiyama T, Mizunuma N, Itami S, Hirano A, Matsuoka A, Matsumura T. Evaluation of prognostic factors for 233 patients with recurrent advanced breast cancer. Jpn J Clin Oncol. 1991;21:334–9.

    PubMed  CAS  Google Scholar 

  16. van Galen KP, Visser HP, van der Ploeg T, Smorenburg CH. Prognostic factors in patients with breast cancer and malignant pleural effusion. Breast J. 2010;16:675–7.

    Article  PubMed  Google Scholar 

  17. Bielsa S, Esquerda A, Salud A, Montes A, Arellano E, Rodríguez-Panadero F, Porcel JM. High levels of tumor markers in pleural fluid correlate with poor survival in patients with adenocarcinomatous or squamous malignant effusions. Eur J Intern Med. 2009;20:383–6.

    Article  PubMed  CAS  Google Scholar 

  18. Terracciano D, Mazzarella C, Cicalese M, Galzerano S, Apostolico G, DI Carlo A, Mariano A, Cecere C, Macchia V. Diagnostic value of carbohydrate antigens in supernatants and sediments of pleural effusions. Oncol Lett. 2010;1:465–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Liu E, Dollbaum C, Scott G, Rochlitz C, Benz C, Smith HS. Molecular lesions involved in the progression of a human breast cancer. Oncogene. 1988;3:323–7.

    PubMed  CAS  Google Scholar 

  20. Driouch K, Champème MH, Beuzelin M, Bièche I, Lidereau R. Classical gene amplifications in human breast cancer are not associated with distant solid metastases. Br J Cancer. 1997;76:784–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Roka S, Fiegl M, Zojer N, Filipits M, Schuster R, Steiner B, Jakesz R, Huber H, Drach J. Aneuploidy of chromosome 8 as detected by interphase fluorescence in situ hybridization is a recurrent finding in primary and metastatic breast cancer. Breast Cancer Res Treat. 1998;48:125–33.

    Article  PubMed  CAS  Google Scholar 

  22. Massoner A, Augustin F, Duba HC, Zojer N, Fiegl MFISH. cytogenetics and prognosis in breast and non-small cell lung cancers. Cytometry B Clin Cytom. 2004;62:52–6.

    Article  PubMed  Google Scholar 

  23. Ioakim-Liossi A, Gagos S, Athanassiades P, Athanassiadou P, Gogas J, Davaris P, Markopoulos C. Changes of chromosomes 1, 3, 6, and 11 in metastatic effusions arising from breast and ovarian cancer. Cancer Genet Cytogenet. 1999;110:34–40.

    Article  PubMed  CAS  Google Scholar 

  24. de Matos Granja N, Soares R, Rocha S, Paredes J, Longatto Filho A, Alves VA, Wiley E, Schmitt FC, Bedrossian C. Evaluation of breast cancer metastases in pleural effusions by molecular biology techniques. Diagn Cytopathol. 2002;27:210–3.

    Article  PubMed  Google Scholar 

  25. Booth BW, Smith GH. Roles of transforming growth factor-alpha in mammary development and disease. Growth Factors. 2007;25:227–35.

    Article  PubMed  CAS  Google Scholar 

  26. Arteaga CL, Hanauske AR, Clark GM, Osborne CK, Hazarika P, Pardue RL, Tio F, Von Hoff DD. Immunoreactive alpha transforming growth factor activity in effusions from cancer patients as a marker of tumor burden and patient prognosis. Cancer Res. 1988;48:5023–8.

    PubMed  CAS  Google Scholar 

  27. Ciardiello F, Kim N, Liscia DS, Bianco C, Lidereau R, Merlo G, Callahan R, Greiner J, Szpak C, Kidwell W, Schlom J, Salomon DS. mRNA expression of transforming growth factor alpha in human breast carcinomas and its activity in effusions of breast cancer patients. J Natl Cancer Inst. 1989;81:1165–71.

    Article  PubMed  CAS  Google Scholar 

  28. Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, Ellis LM. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14:1931–7.

    Article  PubMed  CAS  Google Scholar 

  29. ten Dijke P, Goumans MJ, Pardali E. Endoglin in angiogenesis and vascular diseases. Angiogenesis. 2008;11:79–89.

    Article  PubMed  CAS  Google Scholar 

  30. Ollauri-Ibáñez C, López-Novoa JM, Pericacho M. Endoglin-based biological therapy in the treatment of angiogenesis-dependent pathologies. Expert Opin Biol Ther. 2017;17:1053–63.

    Article  PubMed  CAS  Google Scholar 

  31. Davidson B, Tuft Stavnes H, Førsund M, Berner A, Stafe AC. CD105 (Endoglin) expression in breast carcinoma effusions is a marker of poor survival. Breast. 2010;19:493–8.

    Article  PubMed  Google Scholar 

  32. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8:579–91.

    Article  PubMed  CAS  Google Scholar 

  33. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146:1029–39.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Nagy JA, Masse EM, Herzberg KT, Meyers MS, Yeo KT, Yeo TK, Sioussat TM, Dvorak HF. Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites tumor accumulation. Cancer Res. 1995;55:360–8.

    PubMed  CAS  Google Scholar 

  35. Aalders KC, Tryfonidis K, Senkus E, Cardoso F. Anti-angiogenic treatment in breast cancer: facts, successes, failures and future perspectives. Cancer Treat Rev. 2017;53:98–110.

    Article  PubMed  CAS  Google Scholar 

  36. Kraft A, Weindel K, Ochs A, Marth C, Zmija J, Schumacher P, Unger C, Marmé D, Gastl G. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer. 1999;85:178–87.

    Article  PubMed  CAS  Google Scholar 

  37. Zebrowski BK, Yano S, Liu W, Shaheen RM, Hicklin DJ, Putnam JBJ, Ellis LM. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clin Cancer Res. 1999;5:3364–8.

    PubMed  CAS  Google Scholar 

  38. Konstantinovsky S, Nielsen S, Vyberg M, Kvalheim G, Nesland JM, Reich R, Davidson B. Angiogenic molecule expression is downregulated in effusions from breast cancer patients. Breast Cancer Res Treat. 2005;94:71–80.

    Article  PubMed  CAS  Google Scholar 

  39. Kaplan DR, Miller FD. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol. 1997;9:213–21.

    Article  PubMed  CAS  Google Scholar 

  40. Teng KK, Hempstead BL. Neurotrophins and their receptors: signaling trios in complex biological systems. Cell Mol Life Sci. 2004;61:35–48.

    Article  PubMed  CAS  Google Scholar 

  41. Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001;169:107–14.

    Article  PubMed  CAS  Google Scholar 

  42. Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta. 2016;1866:37–50.

    PubMed  CAS  Google Scholar 

  43. Davidson B, Reich R, Lazarovici P, Flørenes VA, Nielsen S, Nesland JM. Altered expression and activation of the nerve growth factor receptors TrkA and p75 provides the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat. 2004;83:119–28.

    Article  PubMed  CAS  Google Scholar 

  44. Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther. 2007;6:1–12.

    Article  PubMed  CAS  Google Scholar 

  45. Guvakova MA. Insulin-like growth factors control cell migration in health and disease. Int J Biochem Cell Biol. 2007;39:890–909.

    Article  PubMed  CAS  Google Scholar 

  46. Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE. Molecular interactions of the IGF system. Cytokine Growth Factor Rev. 2005;16:421–39.

    Article  PubMed  CAS  Google Scholar 

  47. Li H, Batth IS, Qu X, Xu L, Song N, Wang R, Liu Y. IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: overview and new insights. Mol Cancer. 2017;16:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Athanassiadou P, Athanassiades P, Petrakakou E, Mavrikakis M, Konstantopoulos K, Kyrkou K. Expression of insulin-like growth factor-I receptor and transferrin receptor by breast cancer cells in pleural effusion smears. Cytopathology. 1996;7:400–5.

    Article  PubMed  CAS  Google Scholar 

  49. Slipicevic A, Øy GF, Askildt IC, Holth A, Hellesylt E, Flørenes VA, Davidson B. The diagnostic and prognostic role of the insulin growth factor pathway members IGF-II and IGFBP3 in serous effusions. Hum Pathol. 2009;40:527–37.

    Article  PubMed  CAS  Google Scholar 

  50. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91–100.

    Article  PubMed  Google Scholar 

  51. Rathinam R, Alahari SK. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 2010;29:223–37.

    Article  PubMed  CAS  Google Scholar 

  52. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25:234–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sigstad E, Dong HP, Nielsen S, Berner A, Davidson B, Risberg B. Quantitative analysis of integrin expression in effusions using flow cytometric immunophenotyping. Diagn Cytopathol. 2005;33:321–31.

    Article  Google Scholar 

  54. Kohn EC, Travers LA, Kassis J, Broome U, Klominek J. Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagn Cytopathol. 2005;33:300–8.

    Article  PubMed  CAS  Google Scholar 

  55. Menard S, Castronovo V, Tagliabue E, Sobel ME. New insights into the metastasis-associated 67 kD laminin receptor. J Cell Biochem. 1997;67:155–65.

    Article  PubMed  CAS  Google Scholar 

  56. Menard S, Tagliabue E, Colnaghi MI. The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat. 1998;52:137–45.

    Article  PubMed  CAS  Google Scholar 

  57. Reich R, Vintman L, Nielsen S, Kærn J, Bedrossian C, Berner A, Davidson B. Differential expression of the 67 kilodalton laminin receptor in malignant mesothelioma and carcinomas that spread to serosal cavities. Diagn Cytopathol. 2005;33:332–7.

    Article  PubMed  Google Scholar 

  58. Bruner HC, Derksen PWB. Loss of E-cadherin-dependent cell-cell adhesion and the development and progression of cancer. Cold Spring Harb Perspect Biol. 2017. pii: a029330. https://doi.org/10.1101/cshperspect.a029330. [Epub ahead of print].

  59. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  PubMed  CAS  Google Scholar 

  60. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Elloul S, Bukholt Elstrand M, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43.

    Article  PubMed  CAS  Google Scholar 

  62. Tabariès S, Siegel PM. The role of claudins in cancer metastasis. Oncogene. 2017;36:1176–90.

    Article  PubMed  CAS  Google Scholar 

  63. Kleinberg L, Holth A, Fridman E, Schwartz I, Shih IM, Davidson B. The diagnostic role of claudins in serous effusions. Am J Clin Pathol. 2007;127:928–37.

    Article  PubMed  CAS  Google Scholar 

  64. Konstantinovsky S, Smith Y, Zilber S, Tuft Stavnes H, Becker AM, Nesland JM, Reich R, Davidson B. Breast carcinoma cells in primary tumors and effusions have different gene array profiles. J Oncol. 2010;2010:969084.

    Article  PubMed  CAS  Google Scholar 

  65. Rolih V, Barutello G, Iussich S, De Maria R, Quaglino E, Buracco P, Cavallo F, Riccardo F. CSPG4: a prototype oncoantigen for translational immunotherapy studies. J Transl Med. 2017;15:151.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang X, Osada T, Wang Y, Yu L, Sakakura K, Katayama A, McCarthy JB, Brufsky A, Chivukula M, Khoury T, Hsu DS, Barry WT, Lyerly HK, Clay TM, Ferrone S. CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J Natl Cancer Inst. 2010;102:1496–512.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors - Novel strategies bring new prospects. Biochim Biophys Acta. 1864;2017:1927–39.

    Google Scholar 

  68. Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim Biophys Acta. 1864;2017:2043–55.

    Google Scholar 

  69. Di Carlo A, Mariano A, Terracciano D, Mazzarella C, Galzerano S, Cicalese M, Cecere C, Macchia V. Gelatinolytic activities (matrix metalloproteinase-2 and -9) and soluble extracellular domain of Her-2/neu in pleural effusions. Oncol Rep. 2007;18:425–31.

    PubMed  Google Scholar 

  70. Giarnieri E, Alderisio M, Mancini R, Falasca C, Ricci A, Mariotta S, Giovagnoli MR. Tissue inhibitor of metalloproteinase 2 (TIMP-2) expression in adenocarcinoma pleural effusions. Oncol Rep. 2008;19:483–7.

    PubMed  Google Scholar 

  71. Davidson B, Konstantinovsky S, Nielsen S, Dong HP, Berner A, Vyberg M, Reich R. Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients- a novel model for tumor progression. Clin Cancer Res. 2004;10:7335–46.

    Article  PubMed  CAS  Google Scholar 

  72. Davidson B, Stavnes HT, Hellesylt E, Hager T, Zeppa P, Pinamonti M, Wohlschlaeger J. MMP-7 is a highly specific negative marker for benign and malignant mesothelial cells in serous effusions. Hum Pathol. 2016;47:104–8.

    Article  PubMed  CAS  Google Scholar 

  73. Xin X, Zeng X, Gu H, Li M, Tan H, Jin Z, Hua T, Shi R, Wang H. CD147/EMMPRIN overexpression and prognosis in cancer: A systematic review and meta-analysis. Sci Rep. 2016;6:32804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gieseler F, Lühr I, Kunze T, Mundhenke C, Maass N, Erhart T, Denker M, Beckmann D, Tiemann M, Schulte C, Dohrmann P, Cavaillé F, Godeau F, Gespach C. Activated coagulation factors in human malignant effusions and their contribution to cancer cell metastasis and therapy. Thromb Haemost. 2007;97:1023–30.

    Article  PubMed  CAS  Google Scholar 

  75. Avgeris M, Scorilas A. Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin Ther Targets. 2016;20:801–18.

    Article  PubMed  CAS  Google Scholar 

  76. Davidson B, Xi Z, Saatcioglu F. Kallikrein 4 is expressed in malignant mesothelioma—further evidence for the histogenetic link between mesothelial and epithelial cells. Diagn Cytopathol. 2007;35:80–4.

    Article  PubMed  Google Scholar 

  77. Trackman PC. Lysyl oxidase isoforms and potential therapeutic opportunities for fibrosis and cancer. Expert Opin Ther Targets. 2016;20:935–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sebban S, Davidson B, Reich R. Lysyl oxidase-like 4 is alternatively spliced in an anatomic site-specific manner in tumors involving the serosal cavities. Virchows Arch. 2009;454:71–9.

    Article  PubMed  CAS  Google Scholar 

  79. Kan N, Kodama H, Hori T, Takenaka A, Yasumura T, Kato H, Ogawa H, Mukaihara S, Kudo T, Ohsumi K, Mise K. Intrapleural adaptive immunotherapy for breast cancer patients with cytologically-confirmed malignant pleural effusions: an analysis of 67 patients in Kyoto and Shiga Prefecture, Japan. Breast Cancer Res Treat. 1993;27:203–10.

    Article  PubMed  CAS  Google Scholar 

  80. Lissoni P, Mandalà M, Curigliano G, Ferretti G, Moro C, Ardizzoia A, Malugani F, Tancini G, Tisi E, Arrigoni C, Barni S. Progress report on the palliative therapy of 100 patients with neoplastic effusions by intracavitary low-dose interleukin-2. Oncology. 2001;60:308–12.

    Article  PubMed  CAS  Google Scholar 

  81. Spyridonidis A, Bernhardt W, Behringer D, Köhler G, Azemar M, Pflug A, Henschler R. Proliferation and survival of mammary carcinoma cells are influenced by culture conditions used for ex vivo expansion of CD34(+) blood progenitor cells. Blood. 1999;93:746–55.

    PubMed  CAS  Google Scholar 

  82. Wischhusen J, Waschbisch A, Wiendl H. Immune-refractory cancers and their little helpers—an extended role for immunetolerogenic MHC molecules HLA-G and HLA-E. Semin Cancer Biol. 2007;17:459–68.

    Article  PubMed  CAS  Google Scholar 

  83. Morandi F, Rizzo R, Fainardi E, Rouas-Freiss N, Pistoia V. Recent advances in our understanding of HLA-G biology: lessons from a wide spectrum of human diseases. J Immunol Res. 2016;2016:4326495.

    PubMed  PubMed Central  Google Scholar 

  84. Kleinberg L, Flørenes VA, Skrede M, Dong HP, Nielsen S, McMaster MT, Nesland JM, Shih IM, Davidson B. Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch. 2006;449:31–9.

    Article  PubMed  CAS  Google Scholar 

  85. Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16:133–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Thomachot MC, Bendriss-Vermare N, Massacrier C, Biota C, Treilleux I, Goddard S, Caux C, Bachelot T, Blay JY, Menetrier-Caux C. Breast carcinoma cells promote the differentiation of CD34+ progenitors towards 2 different subpopulations of dendritic cells with CD1a(high)CD86(−)Langerin- and CD1a(+)CD86(+)Langerin+ phenotypes. Int J Cancer. 2004;110:710–20.

    Article  PubMed  CAS  Google Scholar 

  88. Soria G, Yaal-Hahoshen N, Azenshtein E, Shina S, Leider-Trejo L, Ryvo L, Cohen-Hillel E, Shtabsky A, Ehrlich M, Meshel T, Keydar I, Ben-Baruch A. Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: a basis for tumor-promoting interactions. Cytokine. 2008;44:191–200.

    Article  PubMed  CAS  Google Scholar 

  89. Davidson B, Dong HP, Holth A, Berner A, Risberg B. The chemokine receptor CXCR4 is more frequently expressed in breast compared to other metastatic adenocarcinomas in effusions. Breast J. 2008;14:476–82.

    Article  PubMed  Google Scholar 

  90. DeLong P, Carroll RG, Henry AC, Tanaka T, Ahmad S, Leibowitz MS, Sterman DH, June CH, Albelda SM, Vonderheide RH. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol Ther. 2005;4:342–6.

    Article  PubMed  CAS  Google Scholar 

  91. Desfrançois J, Derré L, Corvaisier M, Le Mével B, Catros V, Jotereau F, Gervois N. Increased frequency of nonconventional double positive CD4CD8 alphabeta T cells in human breast pleural effusions. Int J Cancer. 2009;125:374–80.

    Article  PubMed  CAS  Google Scholar 

  92. Davidson B, Konstantinovsky S, Kleinberg L, Nguyen MTP, Bassarova A, Kvalheim G, Nesland JM, Reich R. The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma. Gynecol Oncol. 2006;102:453–61.

    Article  PubMed  CAS  Google Scholar 

  93. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.

    Article  PubMed  CAS  Google Scholar 

  94. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802:396–405.

    Article  PubMed  CAS  Google Scholar 

  95. Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Curr Opin Struct Biol. 2016;41:151–8.

    Article  PubMed  CAS  Google Scholar 

  96. Seth A, Watson DK. Ets transcription factors and their emerging roles in human cancer. Eur J Cancer. 2005;41:2462–78.

    Article  PubMed  CAS  Google Scholar 

  97. Verger A, Duterque-Coquillaud M. When Ets transcription factors meet their partners. Bioessays. 2002;24:362–70.

    Article  PubMed  CAS  Google Scholar 

  98. Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2:827–37.

    Article  PubMed  CAS  Google Scholar 

  99. Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer. 2017;17:337–51.

    Article  PubMed  CAS  Google Scholar 

  100. St Pierre R, Kadoch C. Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. Curr Opin Genet Dev. 2017;42:56–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Shih IM, Davidson B. Pathogenesis of ovarian cancer: clues from selected overexpressed genes. Future Oncol. 2009;5:1641–57.

    Article  PubMed  CAS  Google Scholar 

  102. Davidson B, Trope’ CG, Wang TL, Shih IM. Expression of the chromatin remodeling factor Rsf-1 in effusions is a novel predictor of poor survival in ovarian carcinoma. Gynecol Oncol. 2006;103:814–9.

    Article  PubMed  CAS  Google Scholar 

  103. Davidson B, Wang TL, Shih IM, Berner A. Expression of the chromatin remodeling factor Rsf-1 in down-regulated in breast carcinoma effusions. Hum Pathol. 2008;39:616–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Dupont VN, Gentien D, Oberkampf M, De Rycke Y, Blin N. A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer. 2007;121:1036–46.

    Article  PubMed  CAS  Google Scholar 

  105. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J, Burchell JM. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008;10:R52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Deng T, Liu JC, Pritchard KI, Eisen A, Zacksenhaus E. Preferential killing of breast tumor initiating cells by N,N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine/tesmilifene. Clin Cancer Res. 2009;15:119–30.

    Article  PubMed  CAS  Google Scholar 

  107. Yuan Y, Leszczynska M, Konstantinovsky S, Tropé CG, Reich R, Davidson B. Netrin 4 is upregulated in breast carcinoma effusions compared to corresponding solid tumors. Diagn Cytopathol. 2011;39:562–6.

    Article  PubMed  Google Scholar 

  108. Davidson B, Tuft Stavnes H, Holth A, Chen X, Yang Y, Shih IM, Wang TL. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. J Cell Mol Med. 2011;15:535–44.

    Article  PubMed  CAS  Google Scholar 

  109. Stavnes HT, Nymoen DA, Langerød A, Holth A, Børresen Dale AL, Davidson B. AZGP1 and SPDEF mRNA expression differentiates breast carcinoma from ovarian serous carcinoma. Virchows Arch. 2013;462:163–73.

    Article  PubMed  CAS  Google Scholar 

  110. Bock AJ, Nymoen DA, Brenne K, Kærn J, Davidson B. SCARA3 mRNA is overexpressed in ovarian carcinoma compared with breast carcinoma effusions. Hum Pathol. 2012;43:669–74.

    Article  PubMed  CAS  Google Scholar 

  111. Davidson B, Stavnes HT, Nesland JM, Wohlschlaeger J, Yang Y, Shih IM, Wang TL. Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions. Hum Pathol. 2012;43:684–94.

    Article  PubMed  CAS  Google Scholar 

  112. Kleinberg L, Flørenes VA, Nesland JM, Davidson B. Survivin, a member of the inhibitors of apoptosis (IAP) family, is down-regulated in breast carcinoma effusions. Am J Clin Pathol. 2007;128:389–97.

    Article  PubMed  CAS  Google Scholar 

  113. Witthauer J, Schlereth B, Brischwein K, Winter H, Funke I, Jauch KW, Baeuerle P, Mayer B. Lysis of cancer cells by autologous T cells in breast cancer pleural effusates treated with anti-EpCAM BiTE antibody MT110. Breast Cancer Res Treat. 2009;117:471–81.

    Article  PubMed  Google Scholar 

  114. Sebastian M, Kiewe P, Schuette W, Brust D, Peschel C, Schneller F, Rühle KH, Nilius G, Ewert R, Lodziewski S, Passlick B, Sienel W, Wiewrodt R, Jäger M, Lindhofer H, Friccius-Quecke H, Schmittel A. Treatment of malignant pleural effusion with the trifunctional antibody catumaxomab (Removab) (anti-EpCAM x Anti-CD3): results of a phase 1/2 study. J Immunother. 2009;32:195–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Davidson M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davidson, B., Schmitt, F. (2018). Breast Cancer. In: Davidson, B., Firat, P., Michael, C. (eds) Serous Effusions. Springer, Cham. https://doi.org/10.1007/978-3-319-76478-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76478-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76477-1

  • Online ISBN: 978-3-319-76478-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics